Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 481-484    
  高分子与聚合物基复合材料 |
近红外二区光声成像造影剂的研究进展
高科, 李万万
上海交通大学材料科学与工程学院,上海 200240
Research Progress on Photoacoustic Imaging Contrast Agents Working in the Second Near-infrared Window
GAO Ke, LI Wanwan
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 1277KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光声成像是一种新兴的复合成像技术,其结合了光学成像灵敏度高和声学成像穿透深度大、成像分辨率高的特点,在生物成像领域具有广阔的应用前景,近年来发展迅速。光声成像基于光声效应,通过激光照射成像对象产生超声波,进而实现成像。利用近红外二区激光进行光声成像具有穿透深度大、背景噪声低、最大允许辐照能量高等优势,有利于实现深部组织高分辨成像。外源性光声成像造影剂能够局部增强组织吸收性能,增强光声信号,提升成像对比度。因此近红外二区外源性光声成像造影剂是实现深部组织光声成像的重要条件,近年来受到研究人员的广泛关注。
然而,目前已有的光声成像相关报道主要集中在近红外一区,光声成像造影剂包括无机纳米材料和有机小分子等,其存在组织深度穿透有限、背景噪声明显等问题。关于近红外二区光声成像的报道十分有限,其主要原因是缺乏具备近红外二区吸收能力和光声转换能力的外源性光声成像造影剂。同时,成熟稳定的近红外二区光声成像系统也十分不足,阻碍了近红外二区光声成像造影剂的发展。
本文归纳了近年来近红外二区光声成像造影剂的研究进展,主要包括有机半导体共轭聚合物、无机纳米材料、小分子有机染料等,重点介绍其制备方法、光吸收性能、光声成像能力,并对近红外二区光声成像造影剂的未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高科
李万万
关键词:  有机半导体共轭聚合物  无机纳米材料  小分子有机染料  光声成像造影剂  近红外二区    
Abstract: Photoacoustic imaging (PAI) is an emerging hybrid imaging technique that combines the high sensitivity of optical imaging with the deep penetration and high spatial resolution of acoustic imaging. It has great potential in the field of bio-imaging and has been developed rapidly in recent years. PAI is based on the photoacoustic effect, and the ultrasonic waves generated by imaging object after laser irradiation is used for imaging. PAI working in the second near-infrared window (NIR-II) takes the advantages of deeper penetration, lower background noise, and higher maximum permissible exposure when compared to the first near-infrared window (NIR-I), which leads to high-resolution imaging of deep tissues. The exogenous PAI contrast agents can enhance imaging contrast by locally enhance tissue absorption performance and photoacoustic signals. Therefore, exogenous PAI contrast agents working in NIR-II region are crucial for realizing deep tissue PAI, and has attracted much attention in recent years.
However, most of the reported PAI contrast agents working in NIR-I region, including inorganic nanomaterials and small organic molecules, have limited penetration depth and obvious background noise. Reports related PAI in NIR-II region are very limited since the lack of exogenous PAI contrast agents with NIR-II absorption and photoacoustic conversion capabilities. On the other hand, the short of mature and stable PAI system working in NIR-II region also hinders the development of PAI.
In this paper, the progress of PAI contrast agents working in NIR-II region was summarized, including organic semiconducting conjugated polymers, inorganic nanomaterials and small molecule organic dyes. The synthesis methods, absorption properties and PAI performance were introduced. The future development of PAI in NIR-II region was prospected.
Key words:  organic semiconducting conjugated polymers    inorganic nanomaterials    small molecule organic dyes    photoacoustic imaging contrast agents    second near-infrared window
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  R445  
基金资助: 国家自然科学基金(81671782)
作者简介:  高科,上海交通大学材料科学与工程学院金属基复合材料国家重点实验室硕士研究生,在李万万研究员的指导下进行研究。目前主要从事纳米材料在肿瘤成像与治疗中的应用研究。李万万,上海交通大学研究员,博士研究生导师。他于2004年获得中国上海大学材料科学博士学位,2005年加入上海交通大学材料科学与工程学院金属基复合材料国家重点实验室,2013年升任研究员。他的研究涉及无机纳米晶体的制备、有机-无机分层组装及其在生物医学诊断和治疗中的应用。 他在科学同行评审的国际期刊上发表了50多篇文章。wwli@sjtu.edu.cn
引用本文:    
高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
GAO Ke, LI Wanwan. Research Progress on Photoacoustic Imaging Contrast Agents Working in the Second Near-infrared Window. Materials Reports, 2019, 33(z1): 481-484.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/481
1 Wang X, Pang Y, Ku G, et al. Nature Biotechnology,2003,21(7),803.
2 Wang L V, Hu S. Science,2012,335(6075),1458.
3 Bell A G. Proc Am Assoc Adv Sci,1881,29,115.
4 Wang L V. Nature Photonics,2009,3(9),503.
5 Manohar Srirang, Vaartjes Susanne E, Hespen Johan C G Van, et al. Optics Express,2007,15(19),12277.
6 Tang Jianbo, Coleman Jason E, Dai X J, et al. Scientific Reports,2016,6,25470.
7 Gottschalk Sven, Felix Fehm Thomas, Luís Deán-Ben Xosé, et al. Journal of Cerebral Blood Flow & Metabolism,2015,35(4),531.
8 Wang Lidai, Maslov Konstantin I, Xing W X, et al. Journal of Biomedi-cal Optics,2012,17,106007.
9 Taruttis Adrian, Ntziachristos Vasilis. Nature Photonics,2015,9(4),219.
10 Sandell Julia L, Zhu Timothy C. Journal of Biophotonics,2011,4(11-12),773.
11 Wang L V, Yao J. Nature Methods,2016,13(8),627.
12 Wu J, You L, Lan L, et al. Advanced Materials,2017,29,41.
13 Kenry, Duan Y, Liu B. Advanced Materials,2018,30,1802394.
14 Laser Institute of America,American national standard for safe use of lasers,2007.
15 Weber J, Beard P C, Bohndiek S E. Nature Methods,2016,13(8),639.
16 Li W, Chen X. Nanomedicine (Lond),2015,10(2),299.
17 Zackrisson S, Van De Ven S M W Y, Gambhir S S. Cancer Research,2014,74(4),979.
18 Kim G, Huang S W, Day K C, et al. Journal of Biomedical Optics,2007,12(4),044020.
19 Abuteen Akram, Zanganeh Saeid, Akhigbe Joshua, et al. Physical Chemistry Chemical Physics,2013,15(42),18502.
20 Sun T, Dou J H, Liu S, et al. ACS Applied Materials and Interfaces,2018,10(9),7919.
21 Cao Y Y, Dou J H, Zhao N J, et al. Chemistry of Materials,2016,29(2),718.
22 Jiang Y Y, Li J C, Zhen X, et al. Advanced Materials,2018,30(14),1705980.
23 Cui Y T, Zhang X J, Jenekhe Samson A. Macromolecules,1999,32(11),3824.
24 Jiang Y, Upputuri P K, Xie C, et al. Nano Letters,2017,17(8),4964.
25 Upputuri P K, Jiang Y, Pu K, et al.In: Photons Plus Ultrasound: Imaging and Sensing 2018. DOI:10.1117/12.2287084.
26 Guo B, Sheng Z H, Kenry Kenry, et al. Materials Horizons,2017,4(6),1151.
27 Guo B, Sheng Z H, Hu D, et al. Advanced Materials,2018,30,35.
28 Ji Y J, Xiao C Y, Wang Q, et al. Advanced Materials,2016,28(5),943.
29 Stalder Romain, Mei J G, Reynolds John R. Macromolecules,2010,43(20),8348.
30 Upputuri P K, Yang C, Huang S, et al. Journal of Biomedical Optics,2018,24,3.
31 Wang Z, Upputuri P K, Zhen X, et al. Nano Research,2019,12(1),49.
32 Yeh Yi-Cheun, Creran Brian, Rotello Vincent M. Nanoscale,2012,4(6),1871.
33 Nehl Colleen L, Hafner Jason H. Journal of Materials Chemistry,2008,18(21),2415.
34 Chen Yun-Sheng, Homan Kimberly, Xu David, et al.DOI:10.1364/BIOMED.2012.BM2B.7.
35 Wu Hsiang-Yang, Chu Hsin-Cheng, Kuo Tz-Jun, et al. Chemistry of Materials,2005,17(25),6447.
36 Roggan Andre, Friebel Moritz, Doerschel Klaus, et al. Journal of Biome-dical Optics,1999,4,36.
37 Zhou J, Jiang Y, Hou S, et al. ACS Nano,2018,12(3),2643.
38 Ku G, Zhou M, Song S L, et al. ACS Nano,2012,6(8),7489.
39 Zhou M, Zhang R, Huang M, et al. Journal of the American Chemical Society,2010,132(43),15351.
40 Cerussi Albert E, Shah Natasha S, Hsiang David, et al. Journal of Biomedical Optics,2006,11(4),044005.
41 Zhou Y, Wang D, Zhang Y, et al. Theranostics,2016,6(5),688.
No related articles found!
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed