Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 318-320    
  金属与金属基复合材料 |
国内Bi系高温超导材料制备工艺研究进展
郑贝贝1,2, 邵玲2
1 台州科技职业学院机电与模具工程学院,台州 318020
2 浙江大学台州研究院强电新材料实验室,台州 318000
Domestic Research Progress on Preparation Technology of Bi-based High-temperature Superconducting Materials
ZHENG Beibei1,2, SHAO Ling2
1 School of Mechanical and Electrical Engineering, Taizhou Vocational College of Science and Technology, Taizhou 318020
2 Powerful New Materials Laboratory, Research Institute of Zhejiang University-Taizhou, Taizhou 318000
下载:  全 文 ( PDF ) ( 2216KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超导材料因具有超强导电能力、完全抗磁性和约瑟夫森效应,在电力、磁场、超算等领域展现出巨大的潜力。Bi系高温超导材料的临界使用温度高于液氮的沸点(77 K),能够制成带材和线材,且可承载的电流大,被认为是一种非常具有前景的实用化超导材料。本文主要介绍了Bi系高温超导材料的结构和主要的制备工艺,从制备前驱粉末的三种主要工艺方面,介绍了国内开展的相关研究,简要分析了这三种制备工艺的优缺点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑贝贝
邵玲
关键词:  超导材料  Bi-2212  Bi-2223  高温超导  前驱粉制备工艺    
Abstract: Superconducting materials exhibit great potential in the fields of electricity, magnetic fields, and supercomputers due to their superior electrical conductivity, complete diamagnetism and Josephson effect. Bi-based high-temperature superconducting materials can achieve a critical use temperature higher than the liquid nitrogen boiling point of 77 K, can be made into strips and wires, and can carry a large current, is considered to be a very promising practical superconducting material. This paper mainly introduces the structure and main preparation process of Bi-based high-temperature superconducting materials. From the three main processes of preparing precursor powders, the related researches carried out in China are introduced, and the advantages and disadvantages of these preparation processes are briefly analyzed.
Key words:  superconducting material    Bi-2212    Bi-2223    high-temperature superconductivity    precursor powder preparation process
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  O511  
基金资助: 浙江省高等学校访问工程师项目
作者简介:  郑贝贝,台州科技职业学院讲师。2006年9月至2012年7月,在哈尔滨工业大学获得材料成型及控制工程专业学士学位和材料工程硕士学位。以第一作者在国内外学术期刊上发表论文5篇,申请实用新型专利5项,其中授权5项。现为浙江大学台州研究院强电新材料实验室访问工程师,研究工作主要包括实用高温超导材料的研究开发与应用。zheng3012@126.com
引用本文:    
郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
ZHENG Beibei, SHAO Ling. Domestic Research Progress on Preparation Technology of Bi-based High-temperature Superconducting Materials. Materials Reports, 2019, 33(z1): 318-320.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/318
1 罗会仟. 自然杂志,2017,36(6),427.
2 温华明, 严陆光, 林良真. 低温与超导,2005,33(1),46.
3 冯开明. 核电开发,2009,2(3),212.
4 邓自刚, 李海涛. 中国材料进展,2017,36(5),329.
5 吴力军. Bi系和Y系高温超导材料的形成机理、结构与缺陷的研究. 博士学位论文, 湖南大学,2012.
6 戴超. Bi-2212高温超导线性能及铠装导体性能研究. 博士学位论文, 中国科学技术大学,2018.
7 白利锋. 实用高温超导材料及其在电机中的应用. 博士学位论文, 西北工业大学,2017.
8 李成山. 银及银合金包套Bi-2223高温超导带材的制备和性能. 博士学位论文, 东北大学,2004.
9 张影. Bi系超导材料的Sol-gel法制备、机制及掺杂研究. 博士学位论文, 东北大学,2010.
10 路晓明. Bi-2212薄膜的Pechini溶胶-凝胶法制备和优化、微结构及其超导性能的研究. 博士学位论文, 东北大学,2014.
11 吴会燕. 高温超导体结构和超导电性以及掺杂锰氧化物Sr1-x-CexMnO3磁电性质的研究. 博士学位论文, 中国科学技术大学,2009.
No related articles found!
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed