Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 314-317    
  金属与金属基复合材料 |
一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究
张燕
中国民航管理干部学院经济管理系,北京 100102
Gold Nanoflower Without Surface Modifier Prepared by One-step Method and Its Surface-Enhanced Raman Scattering Property
ZHANG Yan
Economy and Management Department, Civil Aviation Management Institute of China, Beijing 100102
下载:  全 文 ( PDF ) ( 3044KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 一步法合成直径为250 nm的无表面修饰剂花状金纳米颗粒。使用扫描电子显微镜、透射电子显微镜、选区电子衍射仪和X射线衍射仪对花状金纳米颗粒的结构和合成机理进行分析。用模型解释了花状金纳米颗粒形貌变化的动力学机理,模拟并预测了其生长机理。选用4-巯基苯甲酸(PMBA)为探针分子,探测出花状金纳米颗粒具有优越的表面增强拉曼散射性能(SERS),增强因子可高达7.5×105。鉴于独特性能,花状金纳米颗粒在未来各领域具有潜在的广泛应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张燕
关键词:  一步法  花状金纳米材料  无表面修饰剂  表面增强拉曼散射    
Abstract: Au nanoflowers with diameter about 250 nm have been synthesized by a one-step method without surface modifier. There are many characte-ristic methods to be used to research the structure and formation mechanism of the Au nanoflowers, such as scanning and transmission electron microscopy (SEM and TEM), selected area electron diffraction SAED analyses, and X-ray diffraction (XRD). The growth mechanism has been well simulated and predicted by employing growth model to explain morphological evolution of kinetics mechanism. For testing p-mercapto benzoic acid (PMBA) molecule, the Au nanoflowers have exhibited the high surface-enhanced Raman scattering activity, and the enhancement factor (EF) can reach as high as 7.5×105. In view of unique properties, the Au nanoflowers as high-performance SERS substrates appear to be very promising for applications.
Key words:  one-step method    Au nanoflowers    without surface modifier    surface enhanced raman scattering
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TB304  
基金资助: 民航安全能力建设项目资金(14000900100016J013)
作者简介:  张燕,中国民航管理干部学院讲师。2010年9月至2015年7月,在北京航空航天大学获得材料物理与化学专业工学博士学位,2015年12月至2017年10月,在南开大学材料科学与工程专业博士后出站,出站后任教于中国民航管理干部学院。以第一作者在国内外学术期刊上发表论文多篇。研究工作包括金纳米材料合成及金纳米表面增强拉曼光谱、生物传感器、有机催化等。zhangyan19821228@126.com
引用本文:    
张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
ZHANG Yan. Gold Nanoflower Without Surface Modifier Prepared by One-step Method and Its Surface-Enhanced Raman Scattering Property. Materials Reports, 2019, 33(z1): 314-317.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/314
1 Marie-Christine D, Didier A. Chemical Reviews,2004,104(1),293.
2 Wang Y, Kao K, Wang J, et al. The Journal of Physical Chemistry C, 2016,120(42),24382.
3 Grand J, Chapelle M, Bijeon J, et al. Physical Review B,2005,72(3),033407.
4 Fang J, Du S, Lebedkin S, et al. Nano Letters,2010,10(12),5006.
5 Khoury C, Vo-Dinh T. The Journal of Physical Chemistry C,2008,112(48),18849.
6 Runowski M, Goderski S, Paczesny J, et al. The Journal of Physical Chemistry C,2016,120(41),23788.
7 Kang T, Yoon I, Jeon K, et al. The Journal of Physical Chemistry C,2009,113(18),7492.
8 Zhang Y, Yue Y, Peng Y, et al. RSC Advances,2015,5(21),16074.
9 Zhang Y, Wang B, Yang S, et al. RSC New Journal of Chemistry,2015,39(4),2551.
10 Zhang Y, Cui Z, Li L, et al. Physical Chemistry Chemical Physics,2015,17(22),14656.
11 Wang C, Hu Y, Lieber C, et al. Journal of the American Chemical Society,2008,130(28),8902.
12 Huang X, Qi X, Huang Y, et al. ACS Nano,2010,4(10),6196.
13 Xie J, Zhang Q, Lee J, et al. ACS Nano,2008,2(12),2473.
14 Yin P, You T, Tan E, et al. The Journal of Physical Chemistry C,2011,115(37),18061.
15 Xia L, Wang H, Wang J, et al. The Journal of Chemical Physics,2008,129(13),134703.
16 Fang Y, Seong N, Dlott D. Science,2008,321(5887),388.
[1] 陈 雨,余 飞,刘禹彤,徐小楠,张秋平,袁 欢,徐 明. 不同合成过程对溶胶-凝胶法制备的ZnO/Ag纳米复合材料光催化性能的影响[J]. 《材料导报》期刊社, 2017, 31(24): 120-124.
[2] 鲍贤勇, 张峰, 鲁忠臣, 曾美琴, 朱敏. 低压烧结温度对一步法制备超细晶WC-Co基硬质合金组织及性能的影响[J]. 《材料导报》期刊社, 2017, 31(16): 65-71.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed