Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 122-132    https://doi.org/10.11896/j.issn.1005-023X.2017.017.018
  新材料新技术 |
面向结构健康监测的压电传感器综述*
薛子凡1,2, 邢志国2, 王海斗2,3, 李国禄1, 刘喆2,3
1 河北工业大学材料科学与工程学院,天津 300130;
2 装甲兵工程学院装备再制造技术国防科技重点实验室,北京 100072;
3 哈尔滨工程大学材料科学与化学工程学院表/界面科学与技术研究所,哈尔滨150001
A Review of Piezoelectric Sensors for Structural Health Monitoring
XUE Zifan1,2, XING Zhiguo2, WANG Haidou2,3, LI Guolu1, LIU Zhe2,3
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130;
2 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072;
3 Institute of Surface/Interface Science and Technology, School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
下载:  全 文 ( PDF ) ( 3459KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 压电传感器在结构健康监测方面的应用日益广泛。大型工程结构、混凝土结构及微电子构件的损伤监测与智能传感为其提供了广阔的应用平台。压电薄膜与涂层制备工艺不断革新,使压电传感器性能逐步优化,从而开拓了更广阔的应用领域与前景。结合国内外的研究热点和现状,简述了压电传感的动态监测原理,综合概述了外贴式压电传感、埋入式压电传感及表面涂覆式压电传感在结构智能监测中的研究进展,其中针对不同制备工艺,分别阐述了不同表面涂覆式压电传感器的应用研究,归纳并总结了3种传感器的优缺点及表面涂覆式压电传感器的制备工艺,最后展望了未来的应用前景和发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛子凡
邢志国
王海斗
李国禄
刘喆
关键词:  压电传感器  健康监测  损伤检测  智能传感    
Abstract: Piezoelectric sensors have been increasingly used for structural health monitoring, as damage monitoring of large engineering structures and concrete structures, and intelligent sensing of microelectronic components give wide application to them. With the innovation of fabrication processes for piezoelectric thin films and coatings, piezoelectric sensors′ properties are optimized for a wider application area and prospect. Combined with research hotspots and current situation, the dynamic monitoring principle of piezoelectric sensing is briefly described, and the research advances of bonded piezoelectric sensing, embedded piezoelectric sensing and surface coated piezoelectric sensing in structure intelligent monitoring are reviewed. From the perspective of different preparation processes, different types of surface coated piezoelectric sensors are introduced respectively. The advantages and disadvantages of those three varieties of sensors are summarized and the fabrication procedures for surface coated piezoelectric sensors are discussed. Finally the future application prospect and development direction are proposed.
Key words:  piezoelectric sensor    health monitoring    damage detection    intelligent sensing
               出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  TQ174  
基金资助: 国家自然科学基金 (51275526;51535011;51475473)
通讯作者:  王海斗:通讯作者,男,1969年生,博士,研究员,研究方向为再制造表面工程 E-mail:wanghaidou@aliyun.com 李国禄:通讯作者,男,1966年生,博士,教授,博士研究生导师,主要从事表面工程和摩擦学研究 E-mail:liguolu0305@163.com   
作者简介:  薛子凡:女,1992年生,硕士研究生,主要研究方向为压电陶瓷涂层 E-mail:xuezifan1992@126.com
引用本文:    
薛子凡, 邢志国, 王海斗, 李国禄, 刘喆. 面向结构健康监测的压电传感器综述*[J]. 《材料导报》期刊社, 2017, 31(17): 122-132.
XUE Zifan, XING Zhiguo, WANG Haidou, LI Guolu, LIU Zhe. A Review of Piezoelectric Sensors for Structural Health Monitoring. Materials Reports, 2017, 31(17): 122-132.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.018  或          http://www.mater-rep.com/CN/Y2017/V31/I17/122
1 Zhou Xinyuan, Wang Haidou, Yang Daxiang, et al. The research progress of intelligent sensing on coating life prediction[J]. Mater Rev:Rev,2012,26(9):112(in Chinese).
周新远, 王海斗, 杨大祥,等. 涂层寿命预测的智能传感研究进展[J]. 材料导报:综述篇,2012,26(9):112.
2 Chen Yong. Research on piezoelectric impedance technology for structural health monitoring[D]. Hangzhou: Zhejiang University,2010.
陈勇. 基于压电阻抗的结构健康监测技术的研究[D]. 杭州: 浙江大学,2010.
3 袁慎芳. 结构健康监控[M]. 北京: 国防工业出版社, 2007.
4 Sun F P, Chaudhry Z A, Rogers C A, et al. Automated real-time structure health monitoring via signature pattern recognition[J]. Proc SPIE,1995,2443:236.
5 Gu Linsong, Li Guolu, Wang Haidou, et al. Research status on method of improving the piezoelectric properties of PZT[J]. Mater Rev:Rev,2013,27(3):130.
顾林松, 李国禄, 王海斗,等. 提高PZT压电性能方法的研究现状[J]. 材料导报:综述篇,2013,27(3):130.
6 Wang Qiujing. Theoretical and experimental research on mechanical model of piezoelectric ceramic actuators[D]. Shenyang: Shenyang Jianzhu University,2011.
王秋婧. 压电陶瓷驱动器力学模型理论与试验研究[D]. 沈阳: 沈阳建筑大学,2011.
7 Hamzeloo S R, Shamshirsaz M, Rezaei S M. Damage detection on hollow cylinders by electro-mechanical impedance method: Experiments and finite element modeling[J]. Comptes Rendus Mecanique,2012, 340(9):668.
8 Zhang Yuxiang, Xu Fuhou, Zhang Tongda, et al. Application of electro-mechanical impedance sensing technique for online aging monitoring of rubber[J]. Intell Autom Soft Comput,2012,18(8):1101.
9 Wei Han, Wang Qiang, Hui Dechang, et al. Study on damage monitoring mechanism of piezoelectric impedance structure[J]. Piezoelectr Acoustoopt, 2014(4):667.
魏汉, 王强, 惠德昌,等. 压电机电阻抗结构损伤监测机理研究[J]. 压电与声光,2014(4):667.
10 Li Jicheng. Study of the electro-mechanical impedance technique and its application on fatigue damage monitoring of aluminum alloy[D]. Dalian: Dalian University of Technology,2012.
李继承. 压电阻抗技术及其在铝合金疲劳损伤监测中的应用研究[D]. 大连: 大连理工大学,2012.
11 Zhu Denglin, Lv Rui, Yu Jie. Integrated optimal design of the PZT position, size and control of smart cantilever beam[J]. J Mech Eng,2009,45(2):262.
朱灯林, 吕蕊, 俞洁. 压电智能悬臂梁的压电片位置、尺寸及控制融合优化设计[J]. 机械工程学报,2009, 45(2):262.
12 Wang Dansheng, Zhu Hongping, Chen Xiaoqiang, et al. Experimental study on damage identification in a cracked beam through piezoelectric self-sensing actuators[J]. J Vib Shock,2006,25(6):139.
王丹生, 朱宏平, 陈晓强,等. 利用压电自传感驱动器进行裂纹钢梁损伤识别的实验研究[J]. 振动与冲击, 2006,25(6):139.
13 Li Fucai, Miao Xiaoting, Sun Xuewei, et al. Damage detection method for cylindrical structure using guided waves[J]. J Mech Eng,2013,49(6):52.
李富才, 苗晓婷, 孙学伟,等. 基于导波的圆柱结构损伤识别方法[J]. 机械工程学报,2013,49(6):52.
14 Zhang Yu, Hu Liqiong, Luo Hui, et al. Experimental research of crack damage identification in the steel pipeline based on piezoelectric impedance method[J]. J Civil Eng Manag,2015(1):48.
张宇, 胡利琼, 罗辉,等. 压电阻抗法识别管道裂纹试验研究[J]. 土木工程与管理学报,2015(1):48.
15 Du G, Kong Q, Lai T, et al. Feasibility study on crack detection of pipelines using piezoceramic transducers[J]. Int J Distrib Sensor Netw,2013,2013(3):534.
16 Du Guofeng, Zhang Zhizhong, Zhang Dongshan. Multiple crack detection of pipeline using impedance-based structural health monitoring techniques[J]. J Wuhan University of Technology,2013,35(10):101.
杜国锋, 张志忠, 张东山. 基于压电阻抗技术的管道多裂纹损伤识别研究[J]. 武汉理工大学学报,2013, 35(10):101.
17 Wang Wei, Yan Wei, Li Wanchun. Damage identification for a steel frame based on the high-frequency piezoelectric signatures[J]. J Ningbo University (NSEE),2013(2):78.
王炜, 严蔚, 李万春. 基于高频压电阻抗谱的钢框架损伤识别研究[J]. 宁波大学学报:理工版,2013(2):78.
18 Wang R L, Gu H, Song G. Active sensing based bolted structure health monitoring using piezoceramic transducers[J]. Int J Distrib Sensor Netw,2013,2013(2):1.
19 Zhang Y. In situ fatigue crack detection using piezoelectric paint sensor[J]. J Intell Mater Syst Struct,2006, 17(10):843.
20 Song Ying, Du Yanliang, Sun Baochen. Application of piezoelectric sensing technology in real-time monitoring of wheel/rail interaction[J]. J Vib Shock,2010, 29(1):228.
宋颖, 杜彦良, 孙宝臣. 压电传感技术在轮轨力实时监测中的应用探讨[J]. 振动与冲击,2010,29(1):228.
21 Machado S P, Febbo M, Rubio-Marcos F, et al. Evaluation of the performance of a lead-free piezoelectric material for energy harvesting[J]. Smart Mater Struct,2015, 24(11):115011.
22 Kaur N, Bhalla S. Numerical investigations on energy harvesting potential of thin PZT patches adhesively bonded on RC structures[J]. Sensors Actuators A: Phys, 2016,241:44.
23 Liu Zhi, Yan Shi, Sun Wei. Experimental research on damage-sensitive factor extraction in crack detection for PZT concrete structure[J]. J Water Resour Archit Eng,2010,8(1):15.
刘智, 阎石, 孙威. PZT-混凝土结构裂缝监测敏感因子提取试验[J]. 水利与建筑工程学报,2010,8(1):15.
24 Zou Hao, Feng Xin, Hou Shuang, et al. Study on damage detection of emulation concrete structures using piezoelectric sensor[J]. J Di-saster Prev Mitig Eng,2015(6):807.
邹浩, 冯新, 侯爽,等. 利用压电传感器的仿真混凝土损伤探测研究[J]. 防灾减灾工程学报,2015(6):807.
25 Xu Bin, Wang Dan. Development of embedded PZT-based dynamic shear stress sensors for concrete structures[J]. Piezoelectr Acoustoopt,2015, 37(5):764.
许斌, 王丹. 混凝土嵌入式压电动态剪应力传感器研发[J]. 压电与声光,2015,37(5):764.
26 Egusa S, Iwasawa N. Piezoelectric paints: Preparation and application as built-in vibration sensors of structural materials[J]. J Mater Sci,1982,28(28):1667.
27 Sheu G J, Yang S M, Huang W L. Simulating displacement and velocity signals by piezoelectric sensor in vibration control applications[J]. Smart Mater Res,2012,DOI:10.1155/2012/390873.
28 Khante S N, Gedam S R. PZT based smart aggregate for unified health monitoring of RC structures[J]. Open J Civil Eng,2016,6(1):42.
29 Yan Shi, Wu Jie. Mechanical behavior test research on PZT-based smart aggregates[J]. Concrete,2012(6):61.
阎石, 吴杰. 基于PZT片的智能骨料受力性能试验研究[J]. 混凝土,2012(6):61.
30 Zou D, Liu T, Liang C, et al. An experimental investigation on the health monitoring of concrete structures using piezoelectric transdu-cers at various environmental temperatures[J]. J Intell Mater Syst Struct,2015, 26(8):1028.
31 Zhou Hong, Yan Shi, Sun Wei. Experimental research on damage detection of concrete structures using piezoelectric smart aggregates[J]. Concrete, 2009(4):20.
周宏, 阎石, 孙威. 利用压电智能骨料对混凝土结构损伤的识别研究[J]. 混凝土, 2009(4):20.
32 Kong Q, Feng Q, Song G. Water presence detection in a concrete crack using smart aggregates[J]. Int J Smart Nano Mater,2015,6(3):1.
33 Liao W I, Lin C H, Hwang J S, et al. Seismic health monitoring of RC frame structures using smart aggregates[J]. Earthq Eng Eng Vib,2013,12(12):25.
34 Feng Q, Kong Q, Song G. Damage detection of concrete piles subject to typical damage types based on stress wave measurement using embedded smart aggregates transducers[J]. Measurement,2016,88:345.
35 符春林. 铁电薄膜材料及其应用[M]. 北京:科学出版社, 2009.
36 Hoshyarmanesh H, Nehzat N, Salehi M, et al. Thickness and thermal processing contribution on piezoelectric characteristics of Pb(Zr-Ti)O3 thick films deposited on curved In738 using sol-gel technique[J]. Proc Inst Mech Eng Part L: J Mater Des Appl,2015,229:511.
37 Xiong S, Kawada H, Yamanaka H, et al. Piezoelectric properties of PZT films prepared by the sol-gel method and their application in MEMS[J]. Thin Solid Films,2008, 516:5309.
38 Feng Ke, Tong Jianhua, Wang Yu, et al. Design and fabrication of an electric field microsensor based on the structure of piezoelectric cantilever beams[J]. Sci Technol Eng,2015,15(8):90.
冯可, 佟建华, 王宇,等. 压电悬臂梁式微型电场传感器的设计与制备[J]. 科学技术与工程,2015,15(8):90.
39 Kobayashi M, Olding T R, Sayer M, et al. Piezoelectric thick film ultrasonic transducers fabricated by a sol-gel spray technique[J]. Ultrasonics,2002,39(10):675.
40 Kreutz E W, Backes G, Mertin M. Large area pulsed laser deposition of ceramic films[J]. Surf Coat Technol,1997, 97(2):435.
41 Pandey S K, James A R, Prakash C, et al. Electrical properties of PZT thin films grown by sol-gel and PLD using a seed layer[J]. Mater Sci Eng B,2004,112(1):96.
42 Yang Dejun, Wu Jiexin. Application for ultrasonic transducer piezoelectric chip coating processing of magnetron sputtering[J]. Electron Quality,2011(12):71.
杨德俊, 吴杰歆. 基于磁控溅射法的超声换能器压电晶片镀膜方法应用[J]. 电子质量,2011(12):71.
43 Wilke R H T, Johnsonwilke R L, Cotroneo V, et al. Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable X-ray optics[J]. Appl Opt,2013, 52(14):3412.
44 Mazzalai A, Kratzer M, et al. Nanostructural tuning of the texture of PZT pervoskite thin films grown by RF sputtering for piezoelectric MEMS[J]. MRS Proc, 2014,DIO:10.1557/opl.2014.546.
45 Fujii T, Hishinuma Y, et al. Preparation of Nb doped PZT film by RF sputtering[J]. Solid State Commun,2009, 149(41-42):1799.
46 Gamer G M, Shorrocks N M, et al. 0-3 piezoelectric composites for large area hydrophones[J]. Ferroelectrics,1989,93:169.
47 Dias C J. Inorganic ceramic/polymer ferroelectric composite electrets[J]. IEEE Trans Dielectr Electr Insul,1996, 3(5):706.
48 Wang Shubin, Xu Tingxian, Han Jiecai, et al. Preparation and properties of piezoelectric composites of PZT/PVDF[J]. Acta Mater Compos Sin,2000,17(4):1.
王树彬, 徐廷献, 韩杰才, 等. PZT/PVDF 压电复合材料的制备及其性能研究[J]. 复合材料学报,2000,17(4):1.
49 Hanner K A, Safari A, Newnham R E, et al. Thin film 0-3 polymer/piezoelectric ceramic composites: Piezoelectric paints[J]. Ferroelectrics,1989,100(1):255.
50 Payo I, Hale J M. Dynamic characterization of piezoelectric paint sensors under biaxial strain[J]. Sensors Actuators A: Phys,2010,163(1):150.
51 Payo I, Hale J M. Sensitivity analysis of piezoelectric paint sensors made up of PZT ceramic powder and water-based acrylic polymer[J]. Sensors Actuators A: Phys,2011, 168(168):77.
52 Zhang Y. Piezoelectric paint sensor for real-time structural health monitoring[J]. Proc SPIE,2005,5765:57.
53 Yang Zhaoguang, Zhang Taoyun, Wen Dingyun. Development of acoustic emission sensor based on the 0-3 PZT/P(VDF-TFE) piezoelectric composite[J]. Electron Compon Mater,2014,33(6):69.
杨照光, 张涛允, 温定筠,等. 基于0-3型压电复合材料的声发射传感器的研制[J]. 电子元件与材料,2014, 33(6):69.
54 Ctibor P, Sedlacek J, Pala Z. Structure and properties of plasma sprayed BaTiO3, coatings after thermal posttreatment[J]. Ceram Int,2015,41(7):7453.
55 Ctibor P, Pala Z, Boldyryeva H, et al. Microstructure and properties of plasma sprayed lead zirconate titanate (PZT) ceramics[J]. Coatings,2012,2(4):64.
56 Shi Weili, Xing Zhiguo, Wang Haidou, et al. Preparation and performance of PZT coatings sprayed by plasma spraying[J]. China Surf Eng,2014,27(4):19.
石伟丽, 邢志国, 王海斗,等. 等离子喷涂PZT涂层的制备与性能分析[J]. 中国表面工程,2014,27(4):19.
57 Li Guolu, Gu Linsong, Wang Haidou, et al. Structure and perfor-mance study of PZT coating prepared by supersonic plasma spraying[J]. J Funct Mater,2014(11):11118.
李国禄, 顾林松, 王海斗,等. 超音速等离子喷涂PZT涂层的结构与性能研究[J]. 功能材料,2014(11):11118.
58 Xing Z, et al. Properties of the BaTiO3 coating prepared by supersonic plasma spraying[J]. J Alloys Compd,2014,582:246.
59 Shi Yuehua. Research on impedance method application in structural damage monitoring[D]. Jinan: University of Jinan,2014.
侍月华. 压电阻抗法在结构损伤检测中的应用[D]. 济南:济南大学,2014.
60 Lu Lei, Xiao Dingquan, Tian Jianhua, et al. Studies on preparation and applications of lead-free piezoelectric ceramic films[J]. J Funct Mater,2009,40(5):705.
陆雷, 肖定全, 田建华,等. 无铅压电陶瓷薄膜的制备及应用研究[J]. 功能材料,2009,40(5):705.
[1] 丁杨, 周双喜, 董晶亮, 王中平, 郑智秋. 人工智能方法在土木工程监测中的运用[J]. 材料导报, 2019, 33(z1): 274-277.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed