Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 135-140    https://doi.org/10.11896/j.issn.1005-023X.2018.01.017
  物理   材料综述 |材料 |
电磁轨道材料表面损伤及强化技术研究现状
闫涛1,2(),刘贵民2,朱硕2,杜林飞2,惠阳2
1 装甲兵工程学院装备再制造技术国防科技重点实验室,北京 100072
2 装甲兵工程学院装备维修与再制造工程系,北京 100072
Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology
Tao YAN1,2(),Guimin LIU2,Shuo ZHU2,Linfei DU2,Yang HUI2
1 Key Laboratory on Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
2 Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Armored Forces Engineering, Beijing 100072
下载:  全 文 ( PDF ) ( 1000KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

轨道材料的性能是决定电磁轨道炮工程应用的关键因素。在大载流、高温的苛刻工况下,表面刨削、转捩和电弧烧蚀以及载流摩擦磨损是电磁轨道表面的主要损伤形式。综述了电磁炮轨道刨削现象及其产生原因和微观机理的研究现状,总结了转捩和电弧烧蚀对轨道性能的影响,概括了电磁轨道炮中载流摩擦磨损的特点,为开发新型轨道材料提供依据和借鉴。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫涛
刘贵民
朱硕
杜林飞
惠阳
关键词:  电磁轨道  轨道材料  表面损伤    
Abstract: 

The performance of rail materials is the key to the application of the electromagnetic rail-gun. Under high carrier current and high temperature, the main surface failure forms of the electromagnetic rail are surface gouging, transition and the arc erosion, the current carrying friction and wear. This paper reviews the phenomenon, reasons and microscopic mechanism of gouging. A comprehensive summary of transition and arc erosion are expounded. The characteristics of current carrying friction and wear in the EM rail-gun are also summarized. The aim is to provide basis and reference for the development of new rail materials.

Key words:  electromagnetic rail    rail material    surface failure
               出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TJ012.1  
基金资助: 北京市自然科学基金(2152031)
作者简介:  闫涛:男,1978年生,博士研究生,讲师,主要从事军用材料及新概念武器材料研究 E-mail: bjyantao@163.com
引用本文:    
闫涛,刘贵民,朱硕,杜林飞,惠阳. 电磁轨道材料表面损伤及强化技术研究现状[J]. 《材料导报》期刊社, 2018, 32(1): 135-140.
Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology. Materials Reports, 2018, 32(1): 135-140.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.017  或          http://www.mater-rep.com/CN/Y2018/V32/I1/135
图1  电磁轨道炮原理示意图
图2  铜合金轨道表面出现的刨削坑及电弧烧蚀形貌
图3  不同电枢材料对应的刨削阈值速度(轨道材料为AISI1080钢)
图4  不同轨道材料对应的刨削阈值速度(电枢材料为7075铝合金)
图5  (a)整体轨道和(b)拼接轨道刨削现象比较
图6  刨削阈值速度与不同硬度材料之间的关系
图7  刨削产生机理示意图
图8  转捩现象产生示意图
图9  Cu-W轨道表面电弧侵蚀形貌
图10  多次发射后的CuCr铜合金和Dural铝合金轨道表面(发射能量:1.45 MJ)
图11  Cu轨道上带有气孔的Al熔层
图12  Al电枢和Fe轨道的互融层
图13  刷状电枢实物图
图14  材料密度、比热容和熔点之间的关系(电子版为彩图)
图15  材料的电阻率和单位能量熔化体积的关系(电子版为彩图)
[1] Stefani F, Parker J V . Experiments to measure gouging threshold velocity for various metals against copper[J]. IEEE Transactions on Magnetics, 1999,35(1):312.
[2] Marshall R A. Moving contacts in macro particle accelerators[M]. Australian: Australian National University Press, 1978: 384.
[3] Barber J P, Bauer D P . Contact phenomena at hyper velocities[J]. Wear, 1982,78(12):163.
[4] Mark C, Ravi S, Trevor W , et al. The design and testing of a large-caliber railgun[J]. IEEE Transactions on Magnetics, 2008,45(2):1833.
[5] Gerstle F P, Follansbee P S, Pearsall G W , et al. Thermo-plastic shear and fracture of steel during high-velocity sliding[J]. Wear, 1973,24(1):97.
[6] Watt T J, Charys C E, Bassett P M , et al. The effect of surface indentations on gouging in railguns[J]. Wear, 2014,310(1-2):41.
[7] Bourel D L, Persad C . Simulation of Railgun Gouging[J]. IEEE Transactions on Magnetics, 1999,35(1):274.
[8] Zhu R, Zhang Q, Li Z . et al. Impact physics model and influencing factors of gouging for electromagnetic rail launcher [C]∥2014 17th International Symposium on Eectromagnetic Launch Technology (EML). San Diego, 2014: 1.
[9] Schneider M, Schneider R . Advanced rail-sabot configurations for brush armatures[J]. IEEE Transactions on Magnetics, 2007,43(1):186.
[10] LiuF, Zhao L M, Zhang H H , et al. Formation mechanism and simulation analysis of railgun gouging Chinese Journal of High Pressure Physics, 2015,29(3):199(in Chinese).
[10] 刘峰, 赵丽曼, 张晖辉 , 等. 电磁轨道炮刨削的形成机理及仿真分析[J]. 高压物理学报, 2015,29(3):199.
[11] YangD, Yuan W Q, Zhao Y , et al. Uniformity of stiffness coefficient of electromagnetic railgun and formation of gouge Advanced Technology of Electrical Engineering and Energy, 2014,33(3):48(in Chinese).
[11] 杨丹, 袁伟群, 赵莹 , 等. 电磁轨道发射器结构刚度系数与刨削形成[J]. 电工电能新技术, 2014,33(3):48.
[12] JinL W, Lei B, Li Z Y , et al. Formation mechanism analysis and numerical simulation of rail gun gouging Explosion and Shock Waves, 2013,33(5):537(in Chinese).
[12] 金龙文, 雷彬, 李治源 , 等. 轨道炮刨削形成机理分析及数值模拟[J]. 爆炸与冲击, 2013,33(5):537.
[13] TarczaK R, Weldon W F . Metal gouging at low relative sliding velocities[J]. Wear, 1997,209(1-2):21.
[14] StefaniF, Parker V . Experiments to measure gouging threshold belocity for various metals against copper[J]. IEEE Transactions on Magnetics, 1999,35(1):312.
[15] PersadC, Castro Z . Railgun tribology: Characterization and control of multishot wear debris[J]. IEEE Transactions on Magnetics, 2007,43(1):173.
[16] , Zhu R G, Li Z Y , et al. Research progress in hypervelocity gouging Ordnance Material Science and Engieer-ing, 2013,36(4):98(in Chinese).
[16] 张倩, 朱仁贵, 李治源 , 等. 金属材料的超高速刨削研究进展[J]. 兵器材料科学与工程, 2013,36(4):98.
[17] PersadC, Satapathy S . Friction and wear sciences for a highly durable railgun weapon[R]. FY 07 Annual Report, Institute for Advanced Technology the University of Texas, 2007.
[18] WildB, Schuppler C, Alouahabi1 F , et al. The influence of the rail material on the multishot performance of the rapid fire railgun (RAFIRA)[R]. Saint Louis: French-German Research Institute of Saint Louis, 2006.
[19] Xiao Z, , Friction and wear behavior of armature-rail sliding electrical contact surface[D]. Wuhan: Huazhong University of Science & Technology, 2012(in Chinese).
[19] 肖铮 . 电枢-轨道载流滑动接触面摩擦磨损研究[D]. 武汉:华中科技大学, 2012.
[20] ChenY, Xu W D, Yuan W Q , et al. Sliding electrical contacts between aluminum armature and different materials in railgun High Voltage Engineering, 2013,39(4):937(in Chinese).
[20] 陈允, 徐伟东, 袁伟群 , 等. 电磁发射中铝电枢与不同材料导轨间的滑动电接触特性[J]. 高电压技术, 2013,39(4):937.
[21] NelsonC, Edison C . Application of coatings for electromagnetic gun technology[J]. IEEE Transactions on Magnetics, 1995,31(1):704.
[22] TangL L . Experimental and theoretical study on liquid metal film characteristic of armature/rail contact interface in an electromagnetic launching[D]. Wuhan: Huazhong University of Science & Technology, 2015(in Chinese).
[22] 汤亮亮 . 电磁发射中枢轨接触界面金属液化层特性的实验与理论研究[D]. 武汉:华中科技大学, 2015.
[23] ChenL X, He J J, Xia S G , et al. Influence of rail resistivity and rail height on armature edge erosion at current ramp-up in solid armature railgun High Voltage Engineering, 2014,40(4):1071(in Chinese).
[23] 陈立学, 何俊佳, 夏胜国 , 等. 电磁轨道炮轨道电阻率和轨道高度对电流上升沿阶段电枢边沿熔蚀的影响[J]. 高电压技术, 2014,40(4):1071.
[24] CaoH Y, Zhan Z J . Experimental study of Cu/diamond composite electro-magnetic rail ablation characteristics Chinese Journal of high pressure physics, 2016,30(4):317(in Chinese).
[24] 曹海要, 战再吉 . 铜/金刚石复合材料电磁轨道烧蚀特性的实验研究[J]. 高压物理学报, 2016,30(4):317.
[25] Li , . Linear current density and bore pressure of electromagnetic railgun High Voltage Engineering, 2014,40(4):1104(in Chinese).
[25] 李军 . 电磁轨道炮中的电流线密度与膛压[J]. 高电压技术, 2014,40(4):1104.
[26] MegerR A, Cairns R, Douglass S , et al. EM gun bore life experiments at the naval research laboratory[R]. Naval Research Laboratory, 2008.
[27] Li H, Lei B, Li Z Y , et al. Contact resistance characteristics of the interface between armature and rail in electromagnetic railgun launching tests High Voltage Engineering, 2013,39(4):911(in Chinese).
[27] 李鹤, 雷彬, 李治源 , 等. 电磁轨道炮试验过程中枢轨界面的接触电阻特性[J]. 高电压技术, 2013,39(4):911.
[28] Gong F, Weng C S . 3-D numerical study of melt-wave erosion in solid armature railgun High Voltage Engineering, 2014,40(7):2245(in Chinese).
[28] 巩飞, 翁春生 . 电磁轨道炮固体电枢熔化波烧蚀过程的三维数值模拟研究[J]. 高电压技术, 2014,40(7):2245.
[29] GongF, Weng C S . Thermal effect of sliding electrical contact in electromagnetic railgun Chinese Journal of High Pressure Physics, 2014,28(1):91(in Chinese).
[29] 巩飞, 翁春生 . 电磁轨道炮滑动电接触的热效应[J]. 高压物理学报, 2014,28(1):91.
[30] ZhaoY H, Zhang D D, Zhao X L , et al. Investigations on electromagnetic launching characteristic of aluminum alloy brush armature Chinese Journal of High Pressure Physics, 2016,30(3):184(in Chinese).
[30] 赵月红, 张丹丹, 赵晓玲 , 等. 铝合金刷电枢的电磁发射特性研究[J]. 高压物理学报, 2016,30(3):184.
[31] Bair S, Cowan R, Kennedy G , et al. A survey of railgun research at the georgia institute of technology [C]∥2012 16 thInternational Symposium on Electromagnetic Launch Technology (EML). Beijing, 2012: 1.
[32] SiopisM J, Neu R W . Materials selection exercise for electromagnetic launcher rails[J]. IEEE Transactions on Magnetics, 2013,49(8):4831.
No related articles found!
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed