Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 81-84    https://doi.org/10.11896/j.issn.1005-023X.2017.018.017
  材料研究 |
热轧对搅拌摩擦加工制备CNTs/Al复合材料微结构与性能的影响*
夏春, 汪云海, 黄春平, 邢丽, 夏星, 许冬
南昌航空大学轻合金加工科学与技术国防重点学科实验室, 南昌 330063
Influence of Hot Rolling on Microstructure and Properties of CNTs/Al Composites Fabricated by Friction Stir Processing
XIA Chun, WANG Yunhai, HUANG Chunping, XING Li, XIA Xing, XU Dong
National Defence Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063
下载:  全 文 ( PDF ) ( 1680KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在搅拌摩擦加工制备碳纳米管增强铝基复合材料(CNTs/Al)的基础上,研究了热轧对复合材料微结构与性能的影响。结果表明,热轧使基体晶粒沿轧制方向拉长,同时有利于CNTs的取向并在一些CNTs-Al界面形成Al4C3相;基于CNTs取向等微结构的变化以及界面反应引起界面结合力增强的因素,沿轧制方向复合材料的抗拉强度、导电性明显提高,热膨胀率降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏春
汪云海
黄春平
邢丽
夏星
许冬
关键词:  热轧  搅拌摩擦加工  CNTs/Al复合材料  微结构  性能    
Abstract: The effects of hot rolling on the microstructure and properties of CNTs/Al composites fabricated by friction stir processing (FSP) were investigated. The results indicated that hot rolling was beneficial to the orientation of CNTs, and Al4C3 phase was formed in the interface of CNTs/Al. The matrix grain was elongated along the rolling direction at the same time. The tensile strength and electrical conductivity of the composites were significantly improved, and the coefficient of thermal expansion was reduced along the rolling direction, attributed to the changes in the orientation of CNTs and the enhancement of interfacial binding force caused by the interfacial reaction.
Key words:  hot rolling    friction stir processing    CNTs/Al composites    microstructure    property
               出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TG146.2+1  
基金资助: 国家自然科学基金(51465044;51364037);江西省自然科学基金(20142BAB216019);轻合金加工科学与技术国防重点学科实验室开放基金(gf201601003)
作者简介:  夏春:男,1974年生,博士,副教授,研究方向为复合材料制备 Tel:0791-83953312 E-mail:xiachun2002@163.com
引用本文:    
夏春, 汪云海, 黄春平, 邢丽, 夏星, 许冬. 热轧对搅拌摩擦加工制备CNTs/Al复合材料微结构与性能的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 81-84.
XIA Chun, WANG Yunhai, HUANG Chunping, XING Li, XIA Xing, XU Dong. Influence of Hot Rolling on Microstructure and Properties of CNTs/Al Composites Fabricated by Friction Stir Processing. Materials Reports, 2017, 31(18): 81-84.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.017  或          http://www.mater-rep.com/CN/Y2017/V31/I18/81
1 Ma Z Y. Friction stir processing technology: A review[J]. Metall Mater Trans A, 2008,39(3):642.
2 McNelley R T. Friction stir processing(FSP): Refining microstructures and improving properties [J]. Revista De Metalurgia, 2011,46(1):149.
3 Lim D K, Shibayanagi T, Gerlich A P. Synthesis of multi-walled CNT reinforced aluminum alloy composite via friction stir processing [J]. Mater Sci Eng A, 2009,507(1-2):194.
4 Zhao X, Ke L M, Xu W P, et al. Carbon nanotubes reinforced aluminum matrix composites by friction stir processing [J]. Acta Mater Compos Sin, 2011,28(2):185(in Chinese).
赵霞, 柯黎明, 徐卫平, 等. 搅拌摩擦加工法制备碳纳米管增强铝基复合材料 [J]. 复合材料学报, 2011,28(2):185.
5 Liu Z Y, Xiao B L, Wang W G, et al. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing [J]. Carbon, 2012,50(5):1843.
6 Shi N, Nie J H, Zhang Y F, et al. Mechanical and physical properties of carbon nanotube reinforeed aluminum matrix composites [J]. J University of Science and Technology Beijing, 2013,35(1):104(in Chinese).
史娜, 聂俊辉, 张亚丰, 等. 碳纳米管增强铝基复合材料的力学和物理性能 [J]. 北京科技大学学报, 2013,35(1):104.
7 Esawi A M K, Borady M A E. Carbon nanotube reinforced alumi-nium strip [J]. Compos Sci Technol, 2008,68(2):486.
8 Choi H J, Min B H, Shin J H, et al. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes [J]. Composites Part A: Appl Sci Manufacturing, 2011,42(10):1483.
9 Liu Z Y, Xiao B L, Wang W G, et al. Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling [J]. Carbon, 2013,62(5):35.
10George R, Kashyap K T, Rahul R, et al. Strengthening in carbon nanotube/aluminium (CNT/Al) composites [J]. Scr Mater, 2005,53(10):1159.
11Li C D, Wang X J, Liu W Q, et al. Microstructure and strengthening mechanism of carbon nanotubes rein-forced magnesium matrix composite [J]. Mater Sci Eng A, 2014,597(8):264.
12Kuzumaki T, Hayashi T, Miyazawa K, et al. Processing of ductile carbon nanotube/C60 composite [J]. Mater Trans Jim, 1998,39(5):574.
13Bakshi S R, Agarwal A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites [J]. Carbon, 2011,49(2):533.
14Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes [J]. Science, 1996,273(5274):483.
15Yang D J, Wang S G, Zhang Q, et al. Thermal and electrical transport in multi-walled carbon nanotubes [J]. Phys Lett A, 2004,329(3):207.
16Tang Y, Cong H, Zhong R, et al. Thermal expansion of a compo-site of single-walled carbon nanotubes and nano-crystalline aluminum [J]. Carbon, 2004,42(15):3260.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[3] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[4] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[5] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[6] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[7] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[8] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[9] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[10] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[11] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[12] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[13] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[14] 李今朝, 陈亮, 黄腾飞, 匡艳军, 邱振生. 关于反应堆压力容器新型用钢SA-508Gr.4N的研究进展[J]. 材料导报, 2019, 33(z1): 382-385.
[15] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed