Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4079-4087    https://doi.org/10.11896/cldb.19070178
  无机非金属及其复合材料 |
基于行车舒适性的土工格栅处治涵洞路基差异沉降技术
丁龙亭1, 王选仓1, 付林杰2, 张梦媛1, 苟想伟3
1 长安大学公路学院,西安 710064
2 天津市政工程设计研究院,天津 300392
3 甘肃路桥第三公路工程有限责任公司,兰州 730030
Research on Differential Settlement Technology of Culvert Subgrade Treated by Geogrid Based on Driving Comfort
DING Longting1, WANG Xuancang1, FU Linjie2, ZHANG Mengyuan1, GOU Xiangwei3
1 School of Highway, Chang' an University, Xi'an 710064, China
2 Tianjin Municipal Engineering Design and Research Institute, Tianjin 300392, China
3 Gansu Luqiao Third Highway Engineering Co., Ltd., Lanzhou 730030, China
下载:  全 文 ( PDF ) ( 3473KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 目前采用土工格栅处治桥涵台背路基的差异沉降效果良好,为了提高土工格栅在路基处治中的利用率,本工作创新性地将行车舒适性指标引入涵洞台背路基差异沉降控制。基于人-车-路耦合系统模型,分析了不同车型和不同车辆速度对人体最大竖向加速度的影响,通过多次回归计算得到不同车速下人体竖向加速度与差异沉降值的相关关系,提出折线型路基模式下基于行车舒适性的差异沉降控制标准;通过建立涵洞台背路基数值计算模型,计算分析了不同土工格栅铺设方式、密度、位置、长度和格栅模量下涵洞路基顶面的差异沉降分布规律,提出了基于行车舒适性的土工格栅处治涵洞路基差异沉降布设方案,并通过现场试验验证了方案的有效性。研究结果表明:格栅长度是影响涵洞台背路基处治效果的主要因素,所提出的基于舒适性的涵洞台背路基土工格栅铺设方案,可以显著提高格栅的利用率,有效控制路基差异沉降。研究成果可以为山区涵洞台背路基土工格栅铺设提供理论价值与借鉴意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁龙亭
王选仓
付林杰
张梦媛
苟想伟
关键词:  路基工程  涵洞路基  行车舒适性  土工格栅  差异沉降    
Abstract: At present, geogrid is used to treat the differential settlement of the bridge and culvert subgrade, which has been proved effective. In order to improve the utilization rate of geogrid in the subgrade treatment, this paper innovatively introduces the driving comfort index into the differential settlement control of the culvert retailing backwall subgrade. Based on the human-vehicle-road coupling system model, the influence of different types vehicle and different vehicle speeds on the maximum vertical acceleration of the human body was analyzed. The correlation between the vertical acceleration of the human body at different vehicle speeds and the differential settlement value was obtained by multiple regression calculations, and the subgrade differential settlement control standard in polyline subgrade mode based on driving comfort was proposed. By establishing the numerical calculation model of the culvert retailing backwall subgrade, the differential settlement of the top surface of the culvert subgrade under different geogrid laying methods, density, location, length and grid modulus was calculated and analyzed. The differential settlement layout scheme of culvert subgrade treated by geogrid based on driving comfort was proposed, and the scheme was verified by field test. The research results show that the length of the grid is the main factor affecting the treatment effect of the subgrade of the culvert. The proposed comfort-based culvert retailing backwall subgrade geogrid laying scheme can significantly improve the utilization of the grid and effectively control the differential settlement of the subgrade. The research results can provide theoretical value and reference significance for the laying of culvert retailing backwall geogrid in the mountainous area.
Key words:  subgrade engineering    culvert subgrade    driving comfort    geogrid    differential settlement
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  U449.5  
基金资助: 河北省交通运输厅科研项目(JD-2020018);甘肃省科技重大专项(1302GKDA009);甘肃省交通运输厅科技项目(2016-05);甘肃路桥建设集团科技项目(2018-BXSG-QT17)
通讯作者:  wxc2005@chd.edu.cn   
作者简介:  王选仓,长安大学二级教授,博士研究生导师,国务院政府特殊津贴专家,交通部“吴福-振华交通教育优秀教育奖”优秀教师。获省部级科技进步奖40余项,国家发明实用新型专利及软件著作权80余项,出版专著及教材7部,发表论文300余篇。
引用本文:    
丁龙亭, 王选仓, 付林杰, 张梦媛, 苟想伟. 基于行车舒适性的土工格栅处治涵洞路基差异沉降技术[J]. 材料导报, 2021, 35(4): 4079-4087.
DING Longting, WANG Xuancang, FU Linjie, ZHANG Mengyuan, GOU Xiangwei. Research on Differential Settlement Technology of Culvert Subgrade Treated by Geogrid Based on Driving Comfort. Materials Reports, 2021, 35(4): 4079-4087.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070178  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4079
1 Wang Y M, Li Q Z, Gao S Q. Journal of South China University of Technology, 2011,39(9),68(in Chinese).
汪益敏,李庆臻,高水琴.华南理工大学学报(自然科学版),2011,39(9),68.
2 Wang Y M, Yi H, Li Q Z. Advanced Materials Research, 2011,255-260,3376.
3 Zofka A, Maliszewski M, Bernier A, et al. Road Materials and Pavement Design, DOI:10.1080/14680629.2015.1029690.
4 Cao W Z, Zheng J J, Zhou Y J. Journal of Hunan University (Natural Science Edition), 2019, 46 (1), 109(in Chinese).
曹文昭,郑俊杰,周燕君.湖南大学学报(自然科学版),2019,46(1),109.
5 Al-Hedad A S A, Hadi M N S. Road Materials & Pavement Design,2018,1,1.
6 Hu G W, He Q M. Chinese and Foreign Highways, 2018,38(1),38(in Chinese).
胡卫国,何桥敏.中外公路,2018,38(1),38.
7 Zhao M H, Zhang L, Zou X J, et al. China Journal of Highways, 2009,22(1),1(in Chinese).
赵明华,张玲,邹新军,等.中国公路学报,2009,22(1),1.
8 Zhao F T, Wang X C, Gao Z W.Subgrade Engineering, 2009(5),127 (in Chinese).
赵丰田, 王选仓, 高志伟.路基工程, 2009(5),127.
9 Petriaev A, Konon A, Solovyov V.Procedia Engineering, 2017,189,654.
10 Zhang Y Q, Wang X C, Wang C H, et al.Journal of Traffic & Transportation Engineering, 2008(3),63(in Chinese).
张永清,王选仓,王朝辉,等.交通运输工程学报,2008(3),63.
11 Sakleshpur V A, Prezzi M, Salgado R, et al.International Journal of Pavement Engineering, DOI: 10.1080/10298436.2017. 1321419.
12 Wang W, Wang J, Xue J H, et al. Rock & Soil Mechanics, 2005,26(12),1885(in Chinese).
王伟,王俭,薛剑豪,等.岩土力学,2005(12),1885.
13 Zhang X H, Yu Z H, Zou W.Chinese and Foreign Highways, 2011,31(5),33(in Chinese).
张兴华, 喻泽红, 邹维.中外公路, 2011,31(5),33.
14 Geng J Y, Jiang X, Qiu Y J. Journal of Chongqing Jiaotong University (Natural Science Edition), 2013,32(6),1179(in Chinese).
耿建宇,蒋鑫,邱延峻.重庆交通大学学报(自然科学版),2013,32(6),1179.
15 Jiang X, Chen Y, Wu Y, et al. Journal of Southwest Jiaotong University, 2018,53(5),1000(in Chinese).
蒋鑫,陈滔,吴玉,等.西南交通大学学报,2018,53(5),1000.
16 Zheng J J, Ma Q, Zhang J.Chinese Journal of Geotechnical Engineering, 2011,33(7),1135(in Chinese).
郑俊杰, 马强, 张军.岩土工程学报, 2011,33(7),1135.
17 Mousavi S H, Gabr M, Borden R.Canadian Geotechnical Journal,2017, 54(7),1047.
18 Yadu L, Tripathi R K. Procedia-Social and Behavioral Sciences, 2013,104(3),225.
19 Hao X J, Li X W, Guo Y C, et al. Highway, 2018,63(1),1(in Chinese).
郜新军,李晓伟,郭院成,等.公路,2018,63(1),1.
20 Shen L S, Yang G Q, Cheng H T, et al. Chinese Journal of Geotechnical Engineering, 2013,35(4),789 (in Chinese).
沈立森,杨广庆,程和堂,等.岩土工程学报,2013,35(4),789.
21 Lerspalungsanti S, Albers A, Ott S, et al. International Journal of Automotive Technology , 2015,16(1),153.
22 Matsumoto Y, Griffin M J. The Journal of the Acoustical Society of America, 2002,111(3),1280.
23 Mechanical vibration and impact-Evaluation of human exposure to whole body vibrations Part 1: General requirements, China Standard Press, China,2007 (in Chinese).
机械振动与冲击人体暴露于全身振动的评价第1部分:一般要求, 中国标准出版社,2007.
24 Gao Z W. Research on balanced settlement control of highway soft foundation transition section based on ride comfort. Ph.D. Thesis, Chang'an University, China,2012. (in Chinese)
高志伟. 基于行驶平顺性的公路软基过渡段均衡沉降控制研究. 博士学位论文.长安大学,2012.
No related articles found!
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed