Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4174-4178    https://doi.org/10.11896/cldb.19020022
  高分子与聚合物基复合材料 |
量子化学研究L-精氨酸磷酸盐的前线分子轨道与理论振动光谱
王磊
西安石油大学材料科学与工程学院,西安 710065
Quantum Chemical Studies on Frontier Molecular Orbitals and Theoretical Vibration Spectra of L-arginine Phosphate Monohydrate
WANG Lei
School of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
下载:  全 文 ( PDF ) ( 3183KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 L-精氨酸磷酸盐(LAP)晶体是一种性能优异的半有机非线性光学材料,因其特殊的高激光损伤阈值受到众多关注。基于LAP晶体的多种特殊性质及结构中磷酸胍基间作用的相继发现,通过研究分子内基团间作用探讨分子特异性及晶体光损伤机制是一种新的合理途径。本研究根据LAP分子的基团组成建立四个相关分子模型,在M06-2X-D3/6-311++g(d,p)水平下对不同基团组合模型进行了结构优化、频率计算及前线分子轨道分析。研究发现,LAP中L-精氨酸阳离子与磷酸根阴离子具有较强的结合能,磷酸胍基间作用会弱化L-精氨酸分子构象弯曲能力,且使磷氧四面体发生畸变。LAP中磷酸基团能够降低LAP分子轨道能级间隙,有利于分子内电子转移。磷酸基团与L-精氨酸分子上各个基团均有电子相互作用,其中对胍基与氨基上N-H键具有推电子作用,且与胍基间作用更强、更明显,而对羧基表现为吸电子作用。该研究结果为进一步理解和研究晶体中磷酸根和胍基间的作用奠定了良好的理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王磊
关键词:  L-精氨酸磷酸盐  基团间作用  量子化学计算  前线分子轨道  理论振动光谱    
Abstract: L-arginine phosphate monohydrate (LAP) crystal is a kind of semi-organic material with excellent nonlinear optical properties, which attracts much attention due to its special high laser damage threshold. Based on the successive discovery of its uniqueness and the interaction between guanidine and phosphate groups in LAP, it is a novel and reasonable way to explore the molecular specificity and the mechanism of crystal laser damage by studying the interaction between intramolecular groups. In this work, four related molecular models were established based on the group composition of LAP molecular. The structural optimization, theoretical vibrational spectra and the frontier molecular orbital analysis of four molecule models were investigated using M06-2X-D3/6-311++g(d,p) in Gaussian 16. The results show that there is a strong binding energy between L-arginine cation and phosphate anion in LAP, and the interaction between phosphate and guanidine in LAP could weaken the conformational flexibility of L-arginine molecular and distort the phosphorus-oxygen tetrahedron. Compared with water molecular, phosphate group can significantly reduce the molecular orbital energy gap of LAP, which is conducive to the intramolecular electron transfer. In addition, there are various electronic interactions between phosphate group with all groups of L-arginine molecular. The phosphate group have the electron-pushing effect on the N-H bond of amino group and guanidine group, and there is a stronger and more obvious interaction between phosphate and guanidine groups. Moreover, it also shows an electron-pulling effect on the carboxyl group. The study can established a good theoretical foundation for further understanding and studying the interaction between phosphate and guanidine groups.
Key words:  L-arginine phosphate monohydrate    intergroup interaction    quantum chemical calculation    frontier molecular orbital    theoretical vibrational spectra
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  O561  
  O742  
基金资助: 国家自然科学基金青年基金(51702257);陕西省自然科学基础研究计划项目(2018JQ5123);西安石油大学《材料科学与工程》省 级优势学科(ys37020203)
通讯作者:  leiw@xsyu.edu.cn   
作者简介:  王磊,2014年于山东大学获得材料学博士学位。同年进入西安石油大学材料科学与工程学院工作至今,主要从事功能晶体材料设计与制备和材料模拟计算的研究。
引用本文:    
王磊. 量子化学研究L-精氨酸磷酸盐的前线分子轨道与理论振动光谱[J]. 材料导报, 2020, 34(4): 4174-4178.
WANG Lei. Quantum Chemical Studies on Frontier Molecular Orbitals and Theoretical Vibration Spectra of L-arginine Phosphate Monohydrate. Materials Reports, 2020, 34(4): 4174-4178.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020022  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4174
1 Xu D, Jiang M H, Tan Z K. Acta Chimica Sinica, 1982, 41(Z1), 570(in Chinese).
许东,蒋民华,谭忠恪. 化学学报,1982,41(Z1), 570.
2 Eimerl D, Velsko S, Davis L, et al. IEEE Journal of Quantum Electro-nics, 1989, 25, 179.
3 Eimerl D. LLNL Report UCID, 1985, 20565, 92.
4 Yokotani A, Sasaki T, Yoshida K, et al. Applied Physics Letters, 1989, 55(26), 2692.
5 Yoshida H, Nakatsuka M, Fujita H, et al. Applied Optics, 1997, 36(30), 7783.
6 Yoshimura M, Mori Y, Sasaki T, et al. Journal of the Optical Society of America B, 1998, 15(1), 446.
7 Liu X T, Wang L, Wang L N, et al. International Journal of Materials Sciences, 2014, 4, 39.
8 Wang J Y, Zhu S G, Xu C F. Biochemistry, 3rd edition Vol. 2, Higher Education Press, China, 2002(in Chinese).
王镜岩, 朱圣庚, 徐长法.生物化学,第三版下册,高等教育出版社,2002.
9 Bailey D M, Peck L S, Bock C, et al. Physiological and Biochemical Zoology, 2003, 76(5), 622.
10 Xian L, Liu S, Ma Y, et al. Spectrochimica Acta Part A: Molecular Spectroscopy, 2007, 67(2), 368.
11 Previtali V, Trujillo C, Boisson J C, et al. Physical Chemistry Chemical Physics, 2017, 19(46), 31177.
12 Weinhaupl K, Brennich M, Kazmaier U, et al. Journal of Biological Chemistry, 2018, 293, 8379.
13 Mandell D J, Chorny I, Groban E S, et al. Journal of the American Chemical Society, 2007, 129(4), 820.
14 Tang M, Waring A J, Lehrer R I, et al. Angewandte Chemie Internatio-nal Edition, 2008, 47(17), 3202.
15 Diez-Cecilia E, Kelly B, Perez C, et al. European Journal of Medicinal Chemistry, 2014, 81, 427.
16 Woods A S, Ferré S. Journal of Proteome Research, 2005, 4(4), 1397.
17 Jackson S N, Wang H Y J, Woods A S. Journal of Proteome Research, 2005, 4(6), 2360.
18 Cotton F A, Day V W, Hazen E E, et al. Journal of the American Chemical Society, 1973, 95(15), 4834.
19 Cotton F A, Day V W, Hazen Jr E E, et al. Journal of the American Chemical Society, 1974, 96(14), 4471.
20 Trujillo C, Previtali V, Rozas I. Theoretical Chemistry Accounts, 2016, 135(12), 260.
21 Sun Z H. Exploration for laser-induced damage mechanism of crystals in L-arginine family and preparation of novel crystals. Ph.D. Thesis, Shandong University, China, 2010(in Chinese).
孙志华. L-精氨酸盐晶体激光损伤机理的探索及新晶体的制备. 博士学位论文,山东大学, 2010.
22 Wang L N, Zhang G H, Wang X Q, et al. Journal of Molecular Structure, 2012, 1026, 71.
[1] 王磊, 王党会, 肖美霞. 磷酸双乙酸胍分子中基团间作用的量子化学从头算研究[J]. 材料导报, 2019, 33(20): 3508-3511.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed