| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Effect of Electropulsing Treatment on the Microstructure and Mechanical Properties of TC4 Titanium Alloy |
| WANG Shuai1, QING Hua2,*, LU Zhao1,*, YAO Qingrong1, CHEN Zewei1, WANG Yuhan1, ZHANG Ya3, TIAN Weiqing1, TAN Dunming2, ZHAO Yeman2
|
1 Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China 2 Aviation Maintenance NCO Academy, Air Force Engineering University, Xinyang 464001, Henan, China 3 School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450000, China |
|
|
|
|
Abstract In this work, the microstructure and mechanical properties of TC4 titanium alloy, with a particular focus on the effects of electropulsing treatment(EPT) technology, were investigated. The microstructure of the specimens were characterized by optical and scanning electron microscopy before and after treatment at different voltages and cycle times. The mechanical properties of the specimens were tested and analyzed using a hydraulic servo material testing machine. The results demonstrate that there is a linear relationship between the highest temperature and the maximum current density during the electropulsing treatment. Furthermore, the electropulsing treatment markedly enhances the microstructure of TC4 titanium alloy and effectively improves its elongation, while simultaneously reducing the recrystallization and phase transformation temperatures. The elongation exhibits an initial increase followed by a decline with rising voltage. The tensile strength remains largely unaltered, whereas the yield strength declines with increasing voltage. Among the specimens, the elongation increased by 22.9% under the EPT of 400 V and 50 cycles. This study provides a new optimization strategy for the processing and application of titanium alloys.
|
|
Published: 10 November 2025
Online: 2025-11-10
|
|
|
|
|
1 Wang L Q, Xie L C, Lv Y T, et al. Acta Materialia, 2017, 131, 499. 2 Zhang L C, Chen L Y. Advanced Engineering Materials, 2019, 21(4), 1801215. 3 Hafeez H, Liu S F, Lu E, et al. Journal of Alloys and Compounds, 2019, 790, 117. 4 Xing Y Z, Jiang C P, Hao J M. Vacuum, 2013, 95, 12. 5 Arrazola P J, Garay A, Iriarte L M, et al. Journal of Materials Processing Technology, 2009, 209 (5), 2223. 6 Guo J X, Yu D Q, Kan W B, et al. Materials Research and Application, 2023, 17(6), 1015(in Chinese). 郭金鑫, 于大千, 阚文斌, 等. 材料研究与应用, 2023, 17(6), 1015. 7 Wu C, Zhang S P, Guo H M, et al. Gas Turbine Experiment and Research, 2023, 36(4), 55(in Chinese). 吴晨, 张少平, 郭会明, 等. 燃气涡轮试验与研究, 2023, 36(4), 55. 8 Troitskii O, Likhtman V. Inst of Physics and Chemistry, 1963, 148, 332. 9 Zhu R F, Liu J N, Tang G Y, et al. Journal of Alloys and Compounds, 2012, 544, 203. 10 Chen K, Zhan L H, Yu W F. Journal of Materials Science & Technology, 2021, 95, 172. 11 Kim M, Lee S H, Yu J Y, et al. Journal of Materials Research and Technology, 2023, 26, 8500. 12 Ye X X. The effects of high-energy electropulsing on the preparation and properteis of biomedical titanium alloy. Ph. D. Thesis, Tsinghua University, China, 2015 (in Chinese). 叶肖鑫. 高能电脉冲对生物医用钛合金制备及性能影响的研究, 博士学位论文, 清华大学, 2015. 13 Song J L, Li M F, Tang P, et al. Heat Treatment of Metals, 2018, 43(4), 116(in Chinese). 宋进林, 黎明发, 汤朋, 等. 金属热处理, 2018, 43(4), 116. 14 Song J L, Li M F, Tang P, et al. Chinese Journal of Rare Metals, 2018, 42(7), 691 (in Chinese). 宋进林, 黎明发, 汤朋, 等. 稀有金属, 2018, 42(7), 691. 15 Pan D, Wang Y T, Guo Q T, et al. Materials Science and Engineering: A, 2021, 807, 140916. 16 Wang Y T, Zhao Y G, Xu X F, et al. Materials, 2019, 12 (9), 1383. 17 Xie L C, Liu C, Song Y L, et al. Journal of Materials Research and Technology, 2020, 9 (2), 2455. 18 Hu G L, Zhu Y H, Tang G Y, et al. Journal of Materials Science & Technology, 2011, 27 (11), 1034. 19 Ao D W, Chu X G, Yang Y, et al. Vacuum, 2018, 148, 230. 20 Song H, Wang Z J, Gao T J. Transactions of Nonferrous Metals Society of China, 2007, 17 (1), 87. 21 Yan X D, Xu X F, Zhou Y C, et al. Journal of Materials Science & Technology, 2024, 193, 37. 22 Wang X W, Xu J, Shan D B, et al. International Journal of Plasticity, 2016, 85, 230. 23 Wang X W, Xu J, Shan D B, et al. Materials & Design, 2017, 127, 134. 24 Jiang Y B, Tang G Y, Shek C H, et al. Acta Materialia, 2009, 57 (16), 4797. 25 Zhou Y C, Xu X F, Zhang Y, et al. Journal of Materials Science & Technology, 2023, 162, 109. 26 Dong X J. Research on plastic deformation characteristics and globularization behaviorof TA15 Titanium alloy with lamellar microstructure in alpha and beta phase field, Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2011 (in Chinese). 董显娟. 片状组织TA15钛合金α+β相区塑性变形特性及等轴化行为研究, 博士学位论文, 南京航空航天大学, 2011. 27 Ding F, Tang G Y, Xu Z H, et al. Journal of Materials Science & Technology, 2007, 23 (2), 273. 28 Peters M, Kumpfert J, Ward C H, et al. Advanced Engineering Materials, 2003, 5 (6), 419. 29 Gao L L, Liu J X, Cheng X W, et al. Materials Science and Enginee-ring: A, 2014, 618, 104. 30 Yan X D, Xu X F, W C, et al. Surface and Coatings Technology, 2023, 458, 129364. 31 Wang F, Qian D S, Hua L, et al. Scientific Reports, 2019, 9(1), 11315. 32 Zhong X Y. Effect of electropulsing treatment and aging on microstructure and properties of TC4 Titanium alloys in different initial states. Master’ s Thesis, Jilin University, China, 2018 (in Chinese). 种雪颖. 脉冲电流及时效处理对不同初始态TC4钛合金组织及性能的影响, 硕士学位论文, 吉林大学, 2020, 33 Golovin Y I, Finkel V M, Sletkov A. Strength of Materials, 1977, 9 (2), 204. 34 Dolinsky Y, Elperin T. Physical Review B, 1993, 47 (22), 14778. 35 Lu Y N, Long J H, Jiang Y B, et al. Heat Treatment of Metals, 2021, 46(10), 11 (in Chinese). 鲁岩娜, 龙佳慧, 姜雁斌, 等. 金属热处理, 2021, 46(10), 11. 36 Atkins P. Atkins’ physical chemistry, Oxford University Press, UK, 2006. 37 Yang X H. Effect of electropulsing and aging on the microstructure and properties of TC4 Titanium alloy, Master’s Thesis, Jilin University, China, 2018 (in Chinese). 杨雪慧. 脉冲电流处理及时效处理对TC4钛合金组织及性能的影响. 硕士学位论文, 吉林大学, 2018. 38 Chen J H, Xu W F, Zhang F J, et al. Rare Metal Materials and Engineering, 2021, 50 (6), 1883. |
|
|
|