| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Research Progress on Heterogeneous Welding of Ni-based Superalloy and TiAl Based Alloy |
| WANG Yinchen1, CHANG Yunfeng1,2, QIN Zhiwei1, ZHANG Liangliang1, DONG Honggang1, CHENG Yafang2, GUO Peng2, LI Peng1,*
|
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China 2 China Academy of Machinery Zhengzhou Research Institute of Mechanical Engineering Co., Ltd., Zhengzhou 450001, China |
|
|
|
|
Abstract With the continuous innovation of high-performance aero engine manufacturing materials and joining technology, Ni-based superalloys are widely concerned and successfully applied for their excellent high-temperature performance. TiAl based alloys have great potential for aerospace applications as new lightweight high-temperature materials. To fulfil the imperative demand of lightweight development, achieving a sound joining between TiAl based alloys and Ni-based superalloys is extremely necessary. In this paper, to overcome the welding difficulties caused by the differences in physical and chemical properties between these two metals, the microstructure, mechanical properties and fracture mechanisms of heterogeneous joints connected by different welding methods such as fusion welding, brazing, diffusion bonding and friction welding are reviewed. Among these welding methods, fusion welding is flexible and adaptable, but due to uneven heating and other problems, joints are vulne-rable to crack initiation, deteriorating mechanical properties. Brazing is an extensive welding method for two alloys, currently its filler metals are mainly designed as a multi-primary composition with the concept of high entropy, therefore the shear properties at room temperature have been close to the strength of the base metal. The research on diffusion bonding is mainly focused on the design of the interlayer and the establishment of the process window, etc. The joints are characterized by small welding deformation and high bonding strength, suitable for high joining precision and complex structures. Using the friction welding method, the welding interface is fine, without apparent cracks and other defects, howe-ver, the brittle phases generated at the interface will also deteriorate the mechanical properties. In summary, to solve the joining difficulties of TiAl based alloys and Ni-based superalloys, inhibiting the formation of brittle phases and ensuring sound metallurgical bonding is essential. Meanwhile, it is of great significance to promote the practical applications of the two alloys.
|
|
Published: 10 November 2025
Online: 2025-11-10
|
|
|
|
|
1 Long X, Chong K N, Su Y T, et al. International Journal of Fatigue, 2023, 175, 107778. 2 Yang X W, Meng T X, Chu Q, et al. Metallurgy and Materials, 2024, 31(6), 1382. 3 Li K S, Wang R Z, Zhang X C, et al. International Journal of Plasticity, 2023, 165, 103601. 4 Li L H, Sun E, Tin S. Materials Science and Engineering A, 2021, 814, 141146. 5 David S A, Siefert J A, DuPont J N, et al. Science and Technology of Welding and Joining, 2015, 20, 532. 6 Jiang Y J, Chun C Z, Shi L. Modern Welding, 2010(7), 1(in Chinese). 李亚江, 夏春智, 石磊. 现代焊接, 2010(7), 1. 7 Li B Y, Zhang K F, Yao W, et al. Materials Characterization, 2019, 150, 38. 8 Liu Z D, Yang J R, Chen R R, et al. Transactions of Nonferrous Metals Society of China, 2023, 33(12), 4039(in Chinese). 刘泽栋, 杨劼人, 陈瑞润, 等. 中国有色金属学报, 2023, 33(12), 4039. 9 Liu S S, Cao J X, Zhou Y, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(11), 3106(in Chinese). 刘石双, 曹京霞, 周毅, 等. 中国有色金属学报, 2021, 31(11), 3106. 10 Du S G, Wang S L, Ding K, Journal of Manufacturing Processes, 2020, 56, 688. 11 Li P, Zhang Z Y, Zhang L L, et al. Transactions of the China Welding Institution, 2024, 45(8), 1(in Chinese). 李鹏, 张振阳, 张亮亮, 等. 焊接学报, 2024, 45(8), 1. 12 Zhang L L, Dong H G, Li P, et al, Journal of Materials Science & Technology, 2024, 172, 51. 13 Zhang L L, Li P, Li S, et al. Composites Part B. 2024, 274, 111288. 14 Chen B Q, Xiong H P, Guo S Q, et al. Journal of Materials Engineering, 2014(4), 13(in Chinese). 陈冰清, 熊华平, 郭绍庆, 等. 材料工程, 2014(4), 13. 15 Chen B Q, Xiong H P, Sun B B, et al. Journal Materials Science Technology, 2014, 30, 715. 16 Chen B Q. Xiong H P, Guo S Q, et al. Metallurgical and materials transactions. A, Physical Metallurgy and Materials Science, 2015, 46(2), 756. 17 Chen B Q, Xiong H P, Sun B B, et al. Progress in Natural Science:Materials International, 2014, 24, 313. 18 Chen B Q, Xiong H P, Sun B B, et al. Materials and Design, 2015, 87, 732. 19 Hong K, Shin Y C. Journal of Materials Processing Technology, 2017, 245, 46. 20 Ren G Z, Zhang Y, Zhou J P, et al. Journal of Materials Research and Technology, 2023, 27, 6367. 21 Cai X L, Li H M, Wan L B, et al. Optics & Laser Technology, 2023, 157, 108736. 22 Xiao Z Y. TiAl based alloy and nickel-based superalloy. Master’s Thesis, Jilin University, China, 2021(in Chinese). 肖泽宇. TiAl基合金与镍基高温合金激光焊研究与数值模拟, 硕士学位论文, 吉林大学, 2021. 23 Cai X L, Sun D Q, Li H M, et al. Optics & Laser Technology, 2019, 111, 205. 24 Oliveira J P, Panton B, Zeng Z, et al. Acta Materialia, 2016, 105, 9. 25 Zhou X W, Chen Y H, Huang Y D, et al. Journal of Alloys and Compounds, 2018, 735, 2616. 26 Long W M, Zhang Q K, Zhu K, et al. Welding, 2014(1), 3(in Chinese). 龙伟民, 张青科, 朱坤, 等. 焊接, 2014(1), 3. 27 Long W M, Li S N, Dong D, et al. Rare Metal Materials and Engineering, 2019, 48(12), 3781(in Chinese). 龙伟民, 李胜男, 都东, 等. 稀有金属材料与工程, 2019, 48(12), 3781. 28 Jiang C Y, Li X Q, Wan B, et al. Intermetallics, 2022, 142, 107468. 29 Zhang T T, Yang X S, Miao K S, et al. Materials Science and Enginee-ring, A. 2018, 713, 28. 30 Dong D, Shi K Q, Zhu D D, et al. Intermetallics, 2021, 139, 107351. 31 Dong K W, Kong J, Yang Y, et al. Journal of Manufacturing Processes, 2019, 47, 410. 32 Xia Y Q, Ma Z, Du Q, et al. Materials Characterization, 2024, 207, 113520. 33 Kokabi D, Kaflou A. Welding in the World, 2021, 65(6), 1189. 34 Dong K W, Kong J, Peng Y, et al. Journal of Materials Processing Technology, 2020, 283, 116724. 35 Wan B, Li X. Journal of Physics: Conference Series, 2020, 1676(1), 012035. 36 Li X Q, Lou L, Qu S G, et al. Transactions of the China welding Institution, 2019, 40(10), 80(in Chinese). 李小强, 娄立, 屈盛官, 等. 焊接学报, 2019, 40(10), 80. 37 Li L, Zhao W, Feng Z X, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(8), 2143. 38 Xu P, Kang H, Qu P. Journal of the Chinese Society of Rare Earths, 2007, 25(2), 253(in Chinese). 许鹏, 康慧, 曲平. 中国稀土学报, 2007, 25(2), 253. 39 Zhang L L, Dong H G, Li P, et al, Journal of Materials Science & Technology, 2023, 154, 217. 40 Zhang L L, Li P, Dong H G, et al. Journal of Materials Science & Technology, 2025, 218, 287. 41 Hu S P, Li W Q, Fu W, et al. Chinese Journal of Aeronautics, 2021, 42(3), 423(in Chinese). 胡胜鹏, 李文强, 付伟, 等. 航空学报, 2021, 42(3), 423. 42 Chen Y. Research on Nb barrier brazing process and joint properties of Ti2AlNb and GH536 alloys. Master’s Thesis, Harbin Institute of Technology, China, 2019(in Chinese). 陈岩. Ti2AlNb与GH536合金的Nb阻隔钎焊工艺及接头性能研究. 硕士学位论文, 哈尔滨工业大学, 2019. 43 Kokabi D, Kaflou A, Gholamipour R, et al. Journal of Materials Science, 2022, 57(8), 5275. 44 Ren H S, Ren X Y, Long W M, et al. Progress in Natural Science, Materials International, 2021(2), 310. 45 Ren H S, Xiong H P, Ye L, et al. Welding in the World, 2021(1), 65. 46 Li X Y. Design of NiZrSnCuHfFeCr high entropy filler and brazing mechanism for TiAl/GH3536. Master’s Thesis, Harbin Institute of Technology, China, 2022(in Chinese). 李昕悦. TiAl/GH3536的NiZrSnCuHfFeCr高熵钎料设计与连接机理研究. 硕士学位论文, 哈尔滨工业大学, 2022. 47 Seqeiros E, Guedes A, Pinto A, et al. Materials Science Forum, 2013, 730, 847. 48 Ren H S, Xiong H P, Long W M, et al. Journal of Materials Science & Technology, 2019, 35(9), 2070. 49 Long W M, Zhang G X, Zhang Q K, et al. Scripta Materialia, 2016, 110, 41. 50 Long W M, Zhang G X, Zhang Q K, et al. Transactions of the China Welding Institution, 2015, 36(11), 1(in Chinese). 龙伟民, 张冠星, 张青科, 等. 焊接学报, 2015, 36(11), 1. 51 Qian J W, Hou J B, Li J L, et al. Hot Working Technology, 2008(13), 90(in Chinese). 钱锦文, 侯金保, 李京龙, 等. 热加工工艺, 2008(13), 90. 52 Ren H S, Wu X, Chen B, et al. Welding in the World, 2017, 61(2), 375. 53 He P, Li H X, Lin T S, et al. Transactions of the China Welding Institution, 2012, 33(1), 17(in Chinese). 何鹏, 李海新, 林铁松, 等, 焊接学报, 2012, 33(1), 17. 54 Zhou Y, Xiong H P, Chen B, et al. Transactions of the China Welding Institution, 2012, 33(2), 17(in Chinese). 周媛, 熊华平, 陈波, 等. 焊接学报. 2012, 33(2), 17. 55 Qian J W, Li J L, Hou J B, et al. Journal of Aeronautical Materials, 2009, 29(1), 57(in Chinese). 钱锦文, 李京龙, 侯金保, 等. 航空材料学报, 2009, 29(1), 57. 56 Qian J W, Li J L, Xiong J T, et al. Rare Metal Materials and Engineering, 2011, 40(12), 2106(in Chinese). 钱锦文, 李京龙, 熊江涛, 等. 稀有金属材料与工程, 2011, 40(12), 2106. 57 Li H X, Lin T S, He P, et al. Transactions of the China Welding Institution, 2012, 33(11), 51(in Chinese). 李海新, 林铁松, 何鹏, 等. 焊接学报, 2012, 33(11), 51. 58 He P, Wang J, Lin T S, et al. International Journal of Hydrogen Energy, 2014, 39(4), 1882. 59 Wisbey A, Ward-Close C M. Materials Science and Technology, 1997, 13(4), 349. 60 Ren H S, Ren X Y, Xiong H P, et. al. Materials Characterization, 2019, 155, 109813. 61 Duan H P, Bohm K H, Ventzke V, et al. Transactions of Nonferrous Metals Society of China, 2005, 15(2), 375. 62 Beke D L, Erdélyi G, Materials Letters, 2016, 164, 111. 63 Chen J, Zhou X Y, Wang W L, et al. Journal of Alloys and Compounds, 2018, 760, 15. 64 Paul T R, Belova I V, Murch G E. Materials Chemistry and Physics, 2018, 210, 301. 65 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448. 66 Zhou Y, Xiong H P, Mao W, et al. Journal of Materials Engineering, 2012(8), 5(in Chinese). 周媛, 熊华平, 毛唯, 等. 材料工程, 2012(8), 5. 67 Li P, Wang Y C, Zhang L L, et al, Materials Science and Engineering, A, 2024, 902, 146558. 68 Wang Y C, Li P, Zhang L L, et al, Materials & Design, 2024, 244, 113094. 69 Ramos A S, Vieira M T, Simões S, et al. Advanced Materials Research, 2008, 59, 225. 70 Luo G X, Wu G X, Huang Z, et al. Scripta Materialia, 2007, 57(6), 521. 71 Wu G Q, Huang Z, Ruan Z J. Materials Characterization, 2004, 52(1), 81. 72 Bi X Y, Liu H, Li Y, et al. Composites Part B:Engineering, 2024, 218, 111500. 73 Bi X Y, Wang Z M, Xu M J, et al. Composites Part B:Engineering, 2022, 231, 109540. 74 Wang Z M. Bi X Y, Liu B S, et al. Composites Part B:Engineering, 2021, 216, 108797. 75 Dong K W, Kong J, Ruan X D, et al. Materials Science & Engineering, A, 2021, 815, 141255. 76 Li Z F, Wu G Q, Huang Z. Materials Letters, 2004, 58(27/28), 3470. 77 Gao Q, Zhang L Q, Liu J Y, et al. Intermetallics, 2022, 151, 107745. 78 He K, Gao Q, Zhang L Q. Intermetallics, 2024, 169, 108303. 79 Wang S L, Du S G, Li N, et al. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(12), 1957(in Chinese). 王松林, 杜随更, 李娜, 等. 机械科学与技术, 2020, 39(12), 1957. 80 Du S G, Wang S L, Xu W T. Materials, 2020, 13(9), 2072. 81 Lee W B, Kim Y J, Jung S B. Intermetallics, 2004, 12, 671. 82 Zhang X, Effect of intermediate layer on microstructure and mechanical properties of friction stir welded joint of Ti/Al dissimilar metals. Master’s Thesis, Nanchang Hangkong University, China, 2016(in Chinese). 张鑫. 中间层材料对Ti/Al异种金属搅拌摩擦焊接头组织及性能的影响. 硕士学位论文, 南昌航空大学, 2016. 83 Ma J Y, Li J J. Materials Research and Application, 2023, 17(1), 79(in Chinese). 马俊雅, 李静静. 材料研究与应用, 2023, 17(1), 79. |
|
|
|