Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 268-271    https://doi.org/10.11896/j.issn.1005-023X.2018.02.022
  物理   材料研究 |材料 |
密度对C/C复合材料热力学性能的影响
解惠贞1,2,孙建涛1,何轩宇1,薛朋飞1,秦淑颖1
1 西安航天复合材料研究所,西安 710025
2 高性能碳纤维制造及应用国家地方联合工程研究中心,西安 710089
Influence of Density on Mechanical and Thermal Performance of C/C Composite
Huizhen XIE1,2,Jiantao SUN1,Xuanyu HE1,Pengfei XUE1,Shuying QIN1
1 Xi’an Aerospace Composites Research Institute, Xi’an 710025;
2 National and Local Union Engineering Research Center of High-performance Carbon Fiber Manufacture and Application, Xi’an 710089;
下载:  全 文 ( PDF ) ( 2326KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用针刺预制体经化学气相沉积与沥青浸渍-高压碳化致密工艺制备C/C复合材料,通过控制沥青浸渍-高压碳化致密次数,获得了密度分别为1.70 g/cm 3、1.82 g/cm 3、1.89 g/cm 3 的三种C/C材料,测试材料的力学、热学性能。结果表明材料拉伸强度随密度升高而降低。当密度较低时,纤维/基体界面结合强度相对较低,可以延缓纤维断裂的发生;拉伸断口显示出假塑性断裂特征,有利于材料拉伸强度的提高。材料的压缩强度与剪切性能密切相关,且均随密度升高表现出先升后降的趋势。材料的热膨胀系数随密度升高而增大,材料中微晶之间的空隙在受热过程中可以吸收一部分膨胀量,因此对于C/C材料,降低密度有利于降低热膨胀系数。材料导热系数随密度升高而明显增大,且随密度升高,微晶尺寸增大,有利于晶格振动的传递,从而使得导热系数增大。热应力因子随密度升高而先升后降,作为热结构件使用时,采用密度为1.82 g/cm 3的C/C材料可以获得相对较高的抗热震能力。在C/C材料研究开发中,可以综合对材料力学、热学性能的要求来对C/C材料密度指标进行设计。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
解惠贞
孙建涛
何轩宇
薛朋飞
秦淑颖
关键词:  C/C复合材料  密度  力学性能  热学性能  抗热震性能    
Abstract: 

Three kinds of C/C composites with density of 1.70 g/cm 3, 1.82 g/cm 3 and 1.89 g/cm 3 were prepared. The materials employing needled preform were densified by chemical vapor deposition and pitch impregnation-high pressure carbonization (HPIC) process. The density was controlled by times of HPIC. The results showed that the tensile strength decreased with the increasing density. When the density was low, bonding strength of interface between fiber and matrix was low which could delay the fracture of fiber and increase the tensile strength, the tensile fracture of sample possessed the characteristic of pseudo-plastic fracture. Consisted with the shear strength, the compress strength rose and then fell with the increase of density. With the increasing density, the expansion coefficient increased. Interstices among microcrystals absorbed a little amount of expansion during heating process, therefore, the fall of density was beneficial to the decrease of expansion coefficient of C/C. With the increasing density, the thermal conductivity coefficient increased obviously, and microcrystals enlarged which contribute to the transfer of vibration of crystal lattice and increase of thermal conductivity coefficient. The factor of thermal stress rose and then fell with the increasing density. The C/C with the density of 1.82 g/cm 3 possessed high thermal shock resistance as thermal structure components. In the course of C/C R&D, the density target can be designed according to synthetical demands of mechanical and thermal properties.

Key words:  C/C composite    density    mechanical properties    thermal properties    thermal shock resistance
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TB33  
基金资助: 国家自然科学基金(51202233)
引用本文:    
解惠贞,孙建涛,何轩宇,薛朋飞,秦淑颖. 密度对C/C复合材料热力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 268-271.
Huizhen XIE,Jiantao SUN,Xuanyu HE,Pengfei XUE,Shuying QIN. Influence of Density on Mechanical and Thermal Performance of C/C Composite. Materials Reports, 2018, 32(2): 268-271.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.022  或          https://www.mater-rep.com/CN/Y2018/V32/I2/268
Sample Bulk density
g·cm-3
Relative density
%
Porosity
%
Porosity of opening
pore/%
Percentage of opening
pore/%
1# 1.70 75.2 24.8 15.6 62.9
2# 1.82 80.5 19.5 9.9 50.8
3# 1.89 83.6 16.4 4.0 24.4
表1  三种C/C材料的密度和孔隙率
图1  拉伸强度-密度曲线
图2  不同密度C/C材料拉伸断口的SEM照片
图3  压缩强度-密度曲线
图4  剪切强度-密度曲线
图5  试样压缩破坏照片
图6  压缩破坏形态示意图
图7  弯曲强度-密度曲线
图8  热膨胀系数曲线
图9  比热容曲线
图10  导热系数曲线
Sample Density
g·cm-3
Tensile
strength
MPa
Thermal conductivity
coefficient
W·m-1·K-1
Tensile
modulus
GPa
Thermal expansion
coefficient
10-6·K-1
Thermal stress
factor
kW·m-1
1# 1.70 79.2 55.9 33.6 0.816 161.5
2# 1.82 52.5 62.7 19.1 0.891 193.4
3# 1.89 42.0 78.0 17.4 1.011 186.2
表2  不同密度C/C材料的热应力因子
1 Walter Krenkel . Ceramic matrix composites[M]. Weinheim:WILEY-VCH Verlag GmbH & Co.KGaA, 2008: 73.
2 Savage E . Carbon/carbon composites[M]. London: Chapman & Hall, 1993: 15.
3 Chuan X Y, Li H J, Lu J H . Why does cross—extinction property of pyrolytic carbon of C/C composites manufactured by CVI never disappear?[J]. Journal of Northwestern Polytechnical University, 2005,23(5):657(in Chinese).
4 传秀云, 李贺军, 卢锦花 . 化学气相渗透碳/碳复合材料热解碳光性特征——热解碳十字消光机理探讨[J]. 西北工业大学学报, 2005,23(5):657.
5 Cui Y B, Wang H, Ran X Q , et al. Thermodynamic research on pyrolysis mechanism of carbon matrix precursor ethylbenzene used for carbon/carbon material[J]. Chinese Journal of Organic Chemistry, 2004,24(9):1075(in Chinese).
6 崔彦斌, 王惠, 冉新权 , 等. 碳/碳复合材料碳源化合物乙苯热裂解机理的热力学研究[J]. 有机化学, 2004,24(9):1075.
7 Shu W B, Qiao S R, Bai S H , et al. Research on rapid electro-pyrolytic densification for C/C composites[J]. Aerospace Materials & Technology, 2000,30(6):32(in Chinese).
8 舒武炳, 乔生儒, 白世鸿 , 等. 电热解法快速致密C/C复合材料研究[J]. 宇航材料工艺, 2000,30(6):32.
9 Zhang M Y, Huang Q Z, Su Z A , et al. Preparation and microstructure analysis of C/C composites with multi-coupling fields CVI[J]. Journal of Inorganic Materials, 2006,21(6):1373(in Chinese).
10 张明瑜, 黄启忠, 苏哲安 , 等. 多元耦合场CVI法炭/炭复合材料制备及结构分析[J]. 无机材料学报, 2006,21(6):1373.
11 Lei B L, Yi M Z, Xu H J , et al. Influence of resin-derived carbon content on friction and wear performance of C/C composites[J]. Materials Science and Engineering of Powder Metallurgy, 2011,16(1):115(in Chinese).
12 雷宝灵, 易茂中, 徐惠娟 , 等. 树脂炭含量对C/C复合材料摩擦磨损性能的影响[J]. 粉末冶金材料科学与工程, 2011,16(1):115.
13 Fan M X, Li H J, Li K Z . Effect of microstructrure of pyrocarbon on the thermal properties of C/C composites[J]. Carbon Techniques, 2007,26(5):10(in Chinese).
14 范敏霞, 李贺军, 李克智 . 热解碳结构对C/C复合材料热物理性能影响[J]. 炭素技术, 2007,26(5):10.
15 Xie H Z, Fu L K, Sun J T , et al. Influence of carbon fiber distributing on ablative performance of C/C[J]. Materials Science and Enginee-ring of Powder Metallurgy, 2013,18(1):102(in Chinese).
16 解惠贞, 傅利坤, 孙建涛 , 等. 纤维分布对C/C复合材料烧蚀性能的影响[J]. 粉末冶金材料科学与工程, 2013,18(1):102.
17 Zhang S Y, Li H J, Sun J . Thermal properties and mechanical pro-perties of density gradient carbon/carbon composites[J]. Acta Materiae Compositeae Sinica, 2002,19(5):43(in Chinese).
18 张守阳, 李贺军, 孙军 . C/C密度梯度材料的热学及力学性能研究[J]. 复合材料学报, 2002,19(5):43.
19 Zhang X H, Li H J, Hao Z B , et al. Influence of needle-punching processing parameters on mechanical properties of C/C composites reinforced by carbon cloth and carbon fiber net[J]. Joarnal of Inorganic Materials, 2007,22(5):963(in Chinese).
20 张晓虎, 李贺军, 郝志彪 , 等. 针刺工艺参数对炭布网胎增强C/C材料力学性能的影响[J]. 无机材料学报, 2007,22(5):963.
21 12 乔生儒. 复合材料细观力学性能[M]. 西安: 西北工业大学出版社, 1997: 34.
22 13 Wong E Y.Solid rocket nozzle design summary[R].New York:AIAA Paper, No. 68-655,1968.
[1] 王鹤龙, 史贵丙, 王丽, 李宗臻. 高饱和磁通密度铁基非晶纳米晶磁粉芯的研究进展[J]. 材料导报, 2025, 39(3): 24010092-9.
[2] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[7] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[8] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[9] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[10] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[11] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[12] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[13] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[14] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[15] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed