Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 114-119    https://doi.org/10.11896/j.issn.1005-023X.2017.024.023
  材料研究 |
Cu/Zn/Ce/ZSM-5分子筛的碱改性及催化性能研究
涂盛辉,林 立,骆中璨,刘 婷,杨昆忠,杜 军
南昌大学资源环境与化工学院,鄱阳湖环境与资源利用教育部重点实验室, 南昌 330031
Study on Alkali Modification of Cu/Zn/Ce/ZSM-5 and Its Catalytic Performance
TU Shenghui, LIN Li, LUO Zhongcan, LIU Ting, YANG Kunzhong, DU Jun
Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources,Environmental and Chemical Engineering, Nanchang University, Nanchang 330031
下载:  全 文 ( PDF ) ( 814KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用NaOH溶液和金属离子(Cu2+、Zn2+、Ce4+)改性ZSM-5分子筛。通过SEM、XRD等表征手段,探讨NaOH溶液浓度、Cu/Zn/Ce物质的量比以及不同制备方法对ZSM-5分子筛形貌及性能的影响。以光催化辅助降解酸性大红GR模拟废水,考察改性后的ZSM-5分子筛的催化活性。结果表明,当NaOH溶液的浓度为0.2 mol/L、Cu负载量为8%、Cu/Zn/Ce物质的量比为8∶4∶1、制备方法为溶胶-凝胶法时,分子筛的催化性能最佳,离子溶出量较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
涂盛辉
林 立
骆中璨
刘 婷
杨昆忠
杜 军
关键词:  ZSM-5分子筛  改性  催化性能  流失率    
Abstract: ZSM-5 zeolite was modified by NaOH solution and metal ion (Cu2+, Zn2+, Ce4+). The effects of NaOH solution concentration, Cu/Zn/Ce molar ratio and the different preparation methods on the morphology and properties of ZSM-5 zeolite were investigated by means of SEM and XRD. The catalytic activity of modified ZSM-5 zeolite was investigated by photocatalytic degradation of acid red GR simulated waste water. The results show that when the NaOH solution is 0.2 mol/L, the loading of Cu is 8%, the ratio of Cu/Zn/Ce is 8∶4∶1, the preparation method is sol-gel method, the catalytic performance is the best and the ion dissolution is less.
Key words:  ZSM-5 zeolite    modification    catalytic performance    loss amount
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51162022)
作者简介:  涂盛辉:男,1964年生,教授,主要从事光催化及纳米材料的研究 E-mail:tshnc@163.com
引用本文:    
涂盛辉,林 立,骆中璨,刘 婷,杨昆忠,杜 军. Cu/Zn/Ce/ZSM-5分子筛的碱改性及催化性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 114-119.
TU Shenghui, LIN Li, LUO Zhongcan, LIU Ting, YANG Kunzhong, DU Jun. Study on Alkali Modification of Cu/Zn/Ce/ZSM-5 and Its Catalytic Performance. Materials Reports, 2017, 31(24): 114-119.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.023  或          https://www.mater-rep.com/CN/Y2017/V31/I24/114
1 Chen C, Wang X, Zhang J, et al. Superior performance in catalytic combustion of toluene over mesoporous ZSM-5 zeolite supported platinum catalyst[J]. Catal Today, 2015,258:190.
2 Wang L, Cai H, Li S, et al. Ultra-deep removal of thiophene compounds in diesel oil over catalyst TiO2/Ni-ZSM-5 assisted by ultraviolet irradiating[J]. Fuel, 2013,105:752.
3 Chen H, Zhang H, Yan Y. Gradient porous Co-Cu-Mn mixed oxides modified ZSM-5 membranes as high efficiency catalyst for the catalytic oxidation of isopropanol[J]. Chem Eng Sci, 2014,111:313.
4 Chen Yangping,Cheng Dangguo,Chen Fengqiu,et al. NO decomposition and selective catalytic reduction of NO over Cu-ZSM-5 zeolite[J]. Prog Chem, 2014(Z1):248(in Chinese).
陈艳平, 程党国, 陈丰秋, 等. Cu-ZSM-5分子筛催化分解及选择性催化还原NO[J]. 化学进展, 2014(Z1):248.
5 Corma A, Garcia H. Zeolite-based photocatalysts[J]. Chem Commun, 2004(13):1443.
6 Fathi S, Sohrabi M, Falamaki C. Improvement of HZSM-5 performance by alkaline treatments: Comparative catalytic study in the MTG reactions[J]. Fuel, 2014,116(6):529.
7 Mochizuki H, Yokoi T, Imai H, et al. Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking[J]. Appl Catal A: Gen, 2012,449:188.
8 Yang P, Xue X, Meng Z, et al. Enhanced catalytic activity and stability of Ce doping on Cr supported HZSM-5 catalysts for deep oxidation of chlorinated volatile organic compounds[J]. Chem Eng J, 2013,234(12):203.
9 Dükkanc M, Gündüz G, Ylmaz S, et al. Characterization and catalytic activity of CuFeZSM-5 catalysts for oxidative degradation of Rhodamine 6G in aqueous solutions[J]. Appl Catal B: Environ, 2010,95(3-4):270.
10Taran O P, Zagoruiko A N, Ayusheev A B, et al. Wet peroxide oxidation of phenol over Cu-ZSM-5 catalyst in a flow reactor. Kinetics and diffusion study[J]. Chem Eng J, 2015,282:108.
11Yuan J, Huang X, Chen M, et al. Ozone-assisted photocatalytic degradation of gaseous acetaldehyde on TiO2/M-ZSM-5 (M=Zn, Cu, Mn)[J]. Catal Today, 2013,201:182.
12Zhang Sujuan,WU Jing,Feng Xiaobing,et al. Preparation of CuO-ZnO-ZrO2 /HZSM-5 catalysts for synthesis of dimethyl ether by solid grinding-combustion method[J]. J Mol Catal (China),2013(5):445(in Chinese).
张素娟, 吴静, 冯小兵, 等. 固态研磨-燃烧法制CuO-ZnO-ZrO2/HZSM-5二甲醚合成催化剂[J]. 分子催化, 2013(5):445.
13Dou B, Lv G, Wang C, et al. Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Chem Eng J, 2015,270:549.
14Yang P, Xue X, Meng Z, et al. Enhanced catalytic activity and stability of Ce doping on Cr supported HZSM-5 catalysts for deep oxidation of chlorinated volatile organic compounds[J]. Chem Eng J, 2013,234:203.
15Li B, Wang Y. Facile synthesis and photocatalytic activity of ZnO-CuO nanocomposite[J]. Superlattices Microstructures, 2010,47(5):615.
16Ma Dexiao,Ma Chun,Zhang Xinxin,et al. Preparation and photocatalytic performance of ZnO/CuO composited catalyst[J]. J Dalian Polytechnic University, 2014(6):431(in Chinese).
马德笑, 马春, 张新欣, 等. ZnO/CuO复合催化剂的制备及其光催化性能[J]. 大连工业大学学报, 2014(6):431.
17Karunakaran C, Anilkumar P. Semiconductor-catalyzed solar photooxidation of iodide ion[J]. J Mol Catal A: Chem, 2007,265(1-2):153.
18Bao Huizhi. The structure-activity performance relation of CuOx-CeO2 oxide composite[D]. Hefei: University of Science and Tech-nology of China,2012(in Chinese).
包蕙质. CuOx-CeO2复合氧化物的结构调控和催化性能[D]. 合肥:中国科学技术大学, 2012.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 陈芳, 冯奕程, 吴佳育, 关博文, 房建宏, 温小栋, 李超恩. 市政污泥陶粒制备及资源化利用研究进展[J]. 材料导报, 2025, 39(3): 23120099-9.
[3] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[4] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[5] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[6] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[7] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[8] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[9] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[10] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[11] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[12] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[13] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[14] 宋茂林, 张朝阳, 张尚枫, 侯晓伟, 石礼岗, 于斌, 罗宇维, 孔祥明. 超临界CO2环境下磷酸盐改性铝酸盐水泥性能变化[J]. 材料导报, 2024, 38(24): 23090114-4.
[15] 刘圣洁, 曹旭, 张钰林, 傅永腾, 焦晓东. 水性环氧树脂复合改性乳化沥青固化行为及性能研究[J]. 材料导报, 2024, 38(24): 23090085-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed