Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 16-21    https://doi.org/10.11896/j.issn.1005-023X.2017.014.004
  材料研究 |
三维石墨烯/苯胺-吡咯共聚复合物的制备及其超级电容性能*
智新1, 彭同江2,3, 孙红娟3, 汪建德1
1 西南科技大学材料科学与工程学院, 绵阳 621010;
2 西南科技大学分析测试中心, 绵阳 621010;
3 西南科技大学固体废物处理与资源化教育部重点实验室, 绵阳 621010;
Preparation and Supercapacitive Performance of Three-dimensional Graphene/Poly(aniline-co-pyrrole) Composite
ZHI Xin1, PENG Tongjiang2,3, SUN Hongjuan3, WANG Jiande1
1 School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010;
2 Center of Forecasting and Analysis, Southwest University of Science and Technology, Mianyang 621010;
3 Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010;
下载:  全 文 ( PDF ) ( 2060KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以制备的氧化石墨凝胶和苯胺-吡咯共聚物为原料,将二者进行混合超声分散,再以其混合分散液为前驱体,采用一步水热法制得三维石墨烯/苯胺-吡咯共聚复合物(3DAP)。利用X射线衍射(XRD)、拉曼光谱(Raman)、傅里叶变换红外(FT-IR)光谱、扫描电镜(SEM)、透射电镜(TEM)和电化学测试等研究了复合物的结构、形貌及电化学性能。结果表明:3DAP拥有丰富的三维多孔网状结构,并且颗粒状的苯胺-吡咯共聚物能够均匀地分布于孔隙间;作为电极材料,该复合物在0.5 A·g-1电流密度下比电容可达628.5 F·g-1,即使在大电流密度(20 A·g-1)条件下仍可高达384 F·g-1,且在1 A·g-1电流密度下经过1 000次的充放电循环后比容量保持率高达86.1%,表现出良好的倍率特性和循环稳定性,其超级电容性能远优于单纯的石墨烯以及苯胺-吡咯共聚物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
智新
彭同江
孙红娟
汪建德
关键词:  氧化石墨烯  水热法  苯胺-吡咯共聚物  多孔网状结构  超级电容性能    
Abstract: Three-dimensional graphene/poly(aniline-co-pyrrole) composite(3DAP) was prepared by one-step hydrothermal method using a suspension of graphene oxide and poly(aniline-co-pyrrole) as precursor. X-ray diffraction(XRD), Raman spectroscopy(Raman), Fourier transform infrared spectra(FT-IR), scanning electronic microscopy(SEM), transmission electron microscope(TEM) and electrochemical measurements were performed to investigate the structure, morphology and supercapacitive performance of the composite. The result showed that 3DAP presented three dimensional structure and granular poly(aniline-co-pyrrole) were dispersed in the pores uniformly. The capacities reached 628.5 F·g-1 and 384 F·g-1 at 0.5 A·g-1 and 20 A·g-1. The retention rate was found to be 86.1% after 1 000 times of charging and discharging cycle at 1 A·g-1. The results indicated that the composite showed good rate performance and cycle stability and its supercapacitive performance was far better than the 3DGS and poly(aniline-co-pyrrole).
Key words:  graphene oxide    hydrothermal method    poly(aniline-co-pyrrole)    porous network structure    supercapacitive performance
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  O613.71  
  O646.1+6  
基金资助: *国家自然科学基金(41272051;U1630132);西南科技大学博士基金(11ZX7135);西南科技大学研究生创新基金(16ycx023)
作者简介:  智新:女,1991年生,硕士研究生,研究方向为石墨烯基纳米复合材料的制备及其电化学性能 E-mail:xinzhi8794@foxmail.com彭同江:通讯作者,男,1958年生,教授,博士研究生导师,研究方向为新型纳米材料 E-mail:tjpeng@swust.edu.cn
引用本文:    
智新, 彭同江, 孙红娟, 汪建德. 三维石墨烯/苯胺-吡咯共聚复合物的制备及其超级电容性能*[J]. 《材料导报》期刊社, 2017, 31(14): 16-21.
ZHI Xin, PENG Tongjiang, SUN Hongjuan, WANG Jiande. Preparation and Supercapacitive Performance of Three-dimensional Graphene/Poly(aniline-co-pyrrole) Composite. Materials Reports, 2017, 31(14): 16-21.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.004  或          https://www.mater-rep.com/CN/Y2017/V31/I14/16
1 Ramya R,Sivasubramanian R,Sangaranarayanan M V.Conducting polymers-based electrochemical supercapacitors-Progress and prospects[J].Electrochim Acta,2013,101:109.
2 Cao Y, Mallouk T E. Morphology of template-grown polyaniline nanowires and its effect on the electrochemical capacitance of nanowire arrays[J].Chem Mater,2008,20(16):5260.
3 Xu C,Sun J,Gao L.Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance[J].J Mater Chem,2011,21(30):11253.
4 Zhang J,Yu Y,Liu L,et al.Graphene-hollow PPy sphere 3D-nanoarchitecture with enhanced electrochemical performance[J].Nanoscale,2013,5(7):3052.
5 Gómez H,Ram M K,Alvi F,et al.Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors[J].J Power Sources,2011,196(8):4102.
6 Zhang H,Cao G,Wang Z,et al.Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability[J].Electrochem Commun,2008,10(7):1056.
7 Mavundla S E,et al. Physicochemical and morphological properties of poly(aniline-co-pyrrole)[J].J Mater Sci, 2010,45(12):3325.
8 Sari B,Talu M.Electrochemical copolymerization of pyrrole and aniline[J].Synthetic Metals,1998,94(2):221.
9 Xu P,et al.Morphology and physico-electrochemical properties of poly(aniline-co-pyrrole)[J].Synth Met,2009,159(5):430.
10 Liang B,Qin Z,Li T,et al. Poly(aniline-co-pyrrole) on the surface of reduced graphene oxide as high-performance electrode materials for supercapacitors[J].Electrochim Acta,2015,177:335.
11 Sahoo S,et al.Graphene/poly (aniline-co-pyrrole) nanocomposite:Potential candidate for supercapacitor and microwave absorbing applications[J].J Nanosci Nanotechnol,2015,15(9):6931.
12 Sharma A K, Bhardwaj P,Dhawan S K,et al.Oxidative synthesis and electrochemical studies of poly(aniline-co-pyrrole)-hybrid carbon nanostructured composite electrode materials for supercapacitor[J]. Adv Mater Lett, 2015,6(5):414.
13 Feng Mingzhu,Peng Tongjiang,Sun Hongjuan,et al.Effect of oxidation degree on structure and cation exchange capacity of graphite oxide[J].Chinese J Inorg Chem,2016,32(3):427(in Chinese).
冯明珠, 彭同江, 孙红娟,等.氧化程度对氧化石墨结构与阳离子交换容量的影响[J].无机化学学报,2016,32(3):427.
14 Chabi S,Peng C,Yang Z,et al.Three dimensional (3D) flexible graphene foam/polypyrrole composite: Towards highly efficient supercapacitors[J].RSC Adv,2015,5(6):3999.
15 Kane C L.Materials science:Erasing electron mass[J].Nature,2005,438(7065):168.
16 Zhang L,Zhang L,Wan M, et al. Polyaniline micro/nanofibers doped with saturation fatty acids[J]. Synth Met,2006,156(5):454.
17 Zhou C, Han J,Song G,et al.Fabrication of poly (aniline-co-pyrrole) hollow nanospheres with Triton X-100 micelles as templates[J].J Polym Sci A:Polym Chem, 2008,46(11):3563.
18 Dhibar S,Bhattacharya P,Hatui G,et al.Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials[J].J Alloys Compd,2015,625:64.
19 Lian P,Zhu X,Liang S,et al.High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries[J].Electrochim Acta,2011, 56(12):4532.
20 Tagowska M,Patys B,Jackowska K.Polyaniline nanotubules—Anion effect on conformation and oxidation state of polyaniline studied by Raman spectroscopy[J]. Synth Met,2004,142(1):223.
21 Furukawa Y,Tazawa S,Fujii Y,et al. Raman spectra of polypyrrole and its 2,5-13 C-substituted and C-deuterated analogues in doped and undoped states[J].Synth Met,1988,24(4):329.
22 Yang Yonghui,Sun Hongjuan,Peng Tongjiang,et al.Synthesis and structural characterization of graphene by oxidation reduction[J].Chinese J Inorg Chem,2010,26(11):2083(in Chinese).
杨勇辉,孙红娟,彭同江,等.石墨烯的氧化还原法制备及结构表征[J].无机化学学报,2010,26(11):2083.
23 Cong H P,Ren X C,Wang P,et al.Flexible graphene-polyaniline composite paper for high-performance supercapacitor[J].Energy Environmental Sci,2013,6(4):1185.
24 Huang J,Kaner R B.Nanofiber formation in the chemical polymerization of aniline:A mechanistic study[J]. Angew Chem,2004,116(43):5941.
25 Cakmak G,Küçükyavuz Z,Küçükyavuz S.Conductive copolymers of polyaniline,polypyrrole and poly (dimethylsiloxane)[J]. Synth Met,2005,151(1):10.
26 Wang Jiande,Peng Tongjiang,Xian Haiyang,et al.Preparation and supercapacitive performance of three-dimensional reduced graphene oxide/polyaniline composite[J].Acta Phys Chim Sin,2015,31(1):90(in Chinese).
汪建德, 彭同江, 鲜海洋,等. 三维还原氧化石墨烯/聚苯胺复合材料的制备及其超级电容性能[J]. 物理化学学报,2015,31(1):90.
27 Chen Yang, et al.Preparation and electrochemical performance of Ni(OH)2 nanowires/three-dimensional graphene composite materials[J].Acta Phys Chim Sin,2015,31(6):1105(in Chinese).
陈阳,等.氢氧化镍纳米线/三维石墨烯复合材料的制备及其电化学性能[J].物理化学学报,2015,31(6):1105
28 Mi H,Zhang X,Ye X,et al.Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors[J].J Power Sources,2008,176(1):403.
29 Zhang D D,Zhao D L,Yao R R, et al.Enhanced mechanical properties of ammonia-modified graphene nanosheets/epoxy nanocompo-sites[J].RSC Adv,2015,5(36):28098.30 Wang J D,Xian H Y,Peng T J,et al.Three-dimensional graphene-wrapped PANI nanofiber composite as electrode material for supecapacitor[J]. RSC Adv,2015,5(18):13607.
31 Ning G,Li T,et al.Three-dimensional hybrid materials of fish scale-like polyaniline nanosheet arrays on graphene oxide and carbon nanotube for high-performance ultracapacitors[J].Carbon,2013,54:241.
32 Zhu J,Chen S,Zhou H,et al.Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electroche-mical performance[J].Nano Res,2012,5(1):11.
33 Huang L,Chen D,Ding Y,et al.Hybrid composite Ni(OH)2@NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors[J].ACS Appl Mater Interfaces,2013,5(21):11159.
[1] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[2] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[3] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[4] 罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
[5] 朱玉方, 张慧丽, 梁丰国, 杨新伟, 陈长科, 买买提江·依米提, 马俊红. 还原氧化石墨烯的可控制备及表征[J]. 材料导报, 2024, 38(12): 22110271-6.
[6] 任鑫, 王浩鑫, 孙涛, 王港, 孟超, 邱星武. 单脉冲电沉积Ni-纳米TiC-氧化石墨烯复合镀层结构及磨损性能[J]. 材料导报, 2024, 38(11): 22060057-7.
[7] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[8] 王姗迟, 潘嵩玥, 孙俊玲, 赵燕. 热阻型氧化石墨烯基火灾早期预警传感器的研究进展[J]. 材料导报, 2023, 37(24): 22010297-9.
[9] 裴胤昌, 莫胜鹏, 解庆林, 陈南春. 红辉沸石两步水热制备高品质X型分子筛及其高效吸附Cd2+、Ni2+性能研究[J]. 材料导报, 2023, 37(24): 22050310-9.
[10] 孙慧慧, 周子吉, 曹文, 王群, 周忠华, 黄悦. 玻璃表面梯度多孔减反射膜层的水热制备及水刻蚀剂添加Na2HPO4对膜层结构的影响[J]. 材料导报, 2023, 37(22): 22060210-7.
[11] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[12] 颜冬仙, 樊新. rGO/NiCo复合材料制备及电化学性能研究[J]. 材料导报, 2023, 37(18): 22030311-6.
[13] 吴晨曦, 郑文跃, 王现中, 熊道英, 金少波. 石墨烯增强防腐涂层的研究进展[J]. 材料导报, 2023, 37(13): 21080272-9.
[14] 樊晋源, 李茂森, 段平, 陈伟, 张祖华. 氧化石墨烯增强地聚物抗硫酸盐侵蚀性能研究[J]. 材料导报, 2023, 37(13): 22030196-5.
[15] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed