Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 9-13    https://doi.org/10.11896/j.issn.1005-023X.2017.04.003
  材料研究 |
钠钙玻璃上Mg2Si薄膜的制备及其电学性质*
房迪1, 肖清泉1,2, 廖杨芳1,3, 袁正兵1, 王善兰1, 吴宏仙1
1 贵州大学大数据与信息工程学院新型光电子材料与技术研究所, 贵阳 550025;
2 安顺学院航空电子电气与信息网络贵州省高校工程技术研究中心, 安顺 561000;
3 贵州师范大学物理与电子科学学院, 贵阳 550001
Fabrication and Electrical Properties of Mg2Si Films on Soda Lime Glass
FANG Di1, XIAO Qingquan1,2, LIAO Yangfang1,3, YUAN Zhengbing1,
WANG Shanlan1, WU Hongxian1
1 Institute of Advanced Optoelectronic Materials and Technology of College of Big Data and Information Engineering of Guizhou University, Guiyang 550025;
2 Engineering Center for Avionics Electrical and Information Network of Guizhou Provincial Colleges and Universities,Anshun University, Anshun 561000;
3 School of Physics and Electronic Science of Guizhou Normal University, Guiyang 550001
下载:  全 文 ( PDF ) ( 1406KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用磁控溅射技术和退火工艺在钠钙玻璃衬底上制备了Mg2Si半导体薄膜,研究了Mg膜厚度对Mg2Si薄膜结构及其电学性质的影响。在钠钙玻璃上分别溅射两组相同厚度(175 nm)的P-Si和N-Si膜,然后在其上溅射不同厚度Mg膜(240 nm、256 nm、272 nm、288 nm、304 nm),低真空退火4 h制备一系列Mg2Si半导体薄膜。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、霍尔效应测试仪对Mg2Si薄膜的晶体结构、表面形貌、电学性质进行表征与分析。结果表明:采用磁控溅射技术在钠钙玻璃衬底上成功制备出以Mg2Si (220)为主的Mg2Si薄膜。随着沉积Mg膜厚度的增加,Mg2Si衍射峰逐渐增强,薄膜表面更连续,电阻率逐渐减小,霍尔迁移率逐渐降低,载流子浓度逐渐增加。此外,Si膜导电类型和Mg膜厚度共同影响Mg2Si薄膜的导电类型。溅射N-Si膜时,Mg2Si薄膜的导电类型随着Mg膜厚度的增加由P型转化为N型;溅射P-Si膜时,Mg2Si薄膜的导电类型为P型。可以控制制备的Mg2Si半导体薄膜的导电类型,这对Mg2Si薄膜的器件开发有着重要的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
房迪
肖清泉
廖杨芳
袁正兵
王善兰
吴宏仙
关键词:  钠钙玻璃  Mg2Si薄膜  膜厚  磁控溅射    
Abstract: Semiconducting Mg2Si films were prepared by magnetron sputtering deposition and subsequent annealing on soda-lime glass substrates. The influences of Mg film thickness on the crystal structure and electrical properties of Mg2Si films were investigated. P-Si and N-Si films with same thickness (175 nm) were deposited on different soda-lime glass substrates by magnetron sputtering, and then Mg films with different thicknesses (240 nm, 256 nm, 272 nm, 288 nm and 304 nm) were deposited on Si films. A series of Mg2Si semiconductor films were prepared by low vacuum annealing for 4 h. The crystal structure, surface morphology and electrical properties of the obtained films were characterized and analyzed by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and Hall effect measurement system. The results show that Mg2Si films with preferential growth of Mg2Si (220) are prepared successfully by magnetron sputtering technique on soda-lime glass substrates, and that the diffraction peak intensity of obtained Mg2Si films increases with the increase of thickness of Mg films on Si films. Meantime both the electrical resistivity and mobi-lity decrease, and carrier concentrations increase. The surfaces of the films become continuous with the increase of thickness of Mg films on Si films. Both the electrical conduction type of deposited Si films and the thickness of deposited Mg films affect the electrical conduction type of the obtained Mg2Si films. When the N-type Si films are deposited firstly on substrates, the electrical conduction type of the obtained Mg2Si films changes from P-type to N-type with the increase of the thickness of deposited Mg films on Si films. When the P-type Si films are deposited firstly on substrates, the electrical conduction type of the obtained Mg2Si films becomes P-type. The electrical conduction type of the obtained Mg2Si films can be controlled conveniently, which is beneficial to the device development of the Mg2Si films.
Key words:  soda-lime glass    Mg2Si film    film thickness    magnetron sputtering
出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TN304.055  
基金资助: *国家自然科学基金(61264004);贵州省科技攻关计划(黔科合GY字[2011]3015);贵州省国际科技合作项目(黔科合外G字[2013]7003);贵州省教育厅“125”重大科技专项(黔教合重大专项字[2012]003);贵阳市科技计划(筑科合同[2012101]2-16);贵州省自然科学基金(黔科合J字[2014]2052;黔科合J字[2013]2209);安顺学院航空电子电气与信息网络贵州省高校工程技术研究中心开放基金(HKDZ201403);贵州省青年英才培养工程项目(黔省专合字[2012]152);贵州省科技厅贵州大学联合基金(黔科合LH字[2014]7610);贵州大学研究生创新基金(研理工2016068)
通讯作者:  肖清泉:通讯作者,男,1970年生,博士,副教授,主要从事半导体材料与器件研究 E-mail:qqxiao@gzu.edu.cn   
作者简介:  房迪:男,1991年生,硕士研究生,研究方向为固体电子材料与器件 E-mail:707152360@qq.com
引用本文:    
房迪, 肖清泉, 廖杨芳, 袁正兵, 王善兰, 吴宏仙. 钠钙玻璃上Mg2Si薄膜的制备及其电学性质*[J]. 《材料导报》期刊社, 2017, 31(4): 9-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.003  或          https://www.mater-rep.com/CN/Y2017/V31/I4/9
1 Xiao Q Q, Xie Q, Yu Z Q, et al. Influence of sputtering power on the structural and morphological properties of semiconducting Mg2Si films[J]. Phys Procedia,2011,11:130.
2 Atanassov A, Baleva M. On the band diagram of Mg2Si/Si heterojunction as deduced from optical constants dispersions[J]. Thin Solid Films,2007,515(5):3046.
3 Baleva M, Zlateva G, Atanassovl A, et al. Resonant Raman scatte-ring in ion-beam-synthesized Mg2Si in a silicon matrix[J]. Phys Rev B,2005,72(11):115330.
4 Yu Zhiqiang, Xie Quan, Xiao Qingquan, et al. Structure and extinction properties of Mg2Si crystal[J]. Acta Phys Sinica,2009(10):6889(in Chinese).
余志强, 谢泉, 肖清泉, 等. Mg2Si晶体结构及消光特性的研究[J]. 物理学报,2009(10):6889.
5 Mahan J, Vantomme A, Langouche G, et al. Semiconducting Mg2Si thin films prepared by molecular-beam epitaxy[J]. Phys Rev B,1996,54(23):16965.
6 Tani J I, Kido H. Thermoelectric properties of Bi-doped Mg2Si se-miconductors[J]. Physica B,2005,364(1):218.
7 陈茜,谢泉,闫万珺,等. Mg2Si电子结构及光学性质的研究[C]//第六届中国功能材料及其应用学术会议.武汉,2007.
8 Shao Fei, Zhang Jinmin, Tang Huajie, et al. Influence of sputtering Ar flux on the optical constants of metal manganese Film[J]. Mater Rev:Res,2014,28(3):101(in Chinese).
邵飞, 张晋敏, 唐华杰, 等. 溅射Ar流量对Mn膜光学常数的影响[J]. 材料导报:研究篇,2014,28(3):101.
9 Serikawa T, Henmi M, Yamaguchi T, et al. Depositions and microstructures of Mg-Si thin film by ion beam sputtering[J]. Surf Coat Technol,2006,200(14-15):4233.
10 Serikawa T, Henmi M, Yamaguchi T, et al. Formation of Mg-Si thin film deposited by ion beam sputtering[J]. J Jpn Insitute Met,2005,69(1):31.
11 Serikawa T, Henmi M, Kondoh K. Microstructure and Mg concentration of Mg-Si thin film deposited by ion beam sputtering on glass substrate[J]. J Vac Sci Technol A,2004,22:1971.
12 Yu Hong, Xie Quan, Xiao Qingquan, et al. Thermal evaporation method of semiconducting Mg2Si films[J]. J Funct Mater,2013,44(8):1204(in Chinese).
余宏,谢泉,肖清泉,等. Mg2Si半导体薄膜的热蒸发制备[J]. 功能材料,2013,44(8):1204.
13 Xiao Q Q, Xie Q, Chen Q, et al. Annealing effects on the formation of semiconducting Mg2Si film using magnetron sputtering deposition[J]. J Semicond,2011,32(8):082002.
14 Akiyama K, Katagiri A, Ogawa S, et al. Epitaxial growth of Mg2Si films on strontium titanate single crystals[J]. Phys Status Solidi C,2013,10(12):1688.
15 Ogawa S, Katagiri A, Shimizu T, et al. Electrical properties of (110)-oriented nondoped Mg2Si films with p-type conduction prepared by RF magnetron sputtering method[J]. J Electron Mater,2014,43(6):2269.
16 Katagiri A, Ogawa S, Oikawa T, et al. Structural characterization of epitaxial Mg2Si films grown on MgO and MgO-buffered Al2O3 substrates[J]. Jpn J Appl Phys,2015,54(7S2):07JC01.
17 Ohring M. The materials science of thin films: Deposition and structure[M]. Salt Lake City: Academic Press,2002.
18 Chu W, Lau S, Mayer J, et al. Implanted noble-gas atoms as diffusion markers in silicide formation[J]. Thin Solid Films,1975,25(2):395.
19 Kubouchi M, Hayashi K, Miyazaki Y. Quantitative analysis of interstitial Mg in Mg2Si studied by single crystal X-ray diffraction[J]. J Alloy Compd,2014,617:389.
20 Wood D, Zunger A. Electronic structure of generic semiconductors: Antifluorite silicide and Ⅲ-Ⅴ compounds[J]. Phys Rev B,1986,34(6):4105.
21 Morris R, Redin R, Danielson G. Semiconducting properties of Mg2Si single crystals[J]. Phys Rev,1958,109(6):1909.
[1] 李迎春, 杨更生, 杨明宣, 邱明, 范恒华. 调制周期对磁控溅射Cr/类石墨碳多层膜腐蚀-磨损性能的影响[J]. 材料导报, 2024, 38(21): 23070129-7.
[2] 乔礼红, 游才印, 付花睿, 田娜, 白洋, 刘小鱼. 不同界面次序CoFeMnSi多层膜的磁各向异性[J]. 材料导报, 2024, 38(18): 23040015-6.
[3] 郭乃胜, 于安康, 王志臣, 房辰泽. 基于吸附沥青膜厚度的沥青与矿粉交互作用能力评价研究[J]. 材料导报, 2023, 37(17): 22010049-8.
[4] 程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
[5] 马新国, 程正旺, 王妹, 贺晶, 邹维, 邓水全. 适用声波谐振器的磁控溅射制备AlN薄膜优化技术[J]. 材料导报, 2023, 37(11): 21080275-7.
[6] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[7] 李彤, 赵卓, 武俊生, 方方, 周艳文. 粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征[J]. 材料导报, 2022, 36(6): 20120259-4.
[8] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[9] 张亚南, 周子超, 张豪, 肖宇琦, 邓娜, 付彬芸, 多树旺. 工艺参数对等离子增强磁控溅射TiAlN涂层微观结构及性能的影响[J]. 材料导报, 2022, 36(24): 21010184-6.
[10] 刘炘城, 邵海成, 乔冠军, 陆浩杰, 于刘旭, 张相召, 刘桂武. 氧化铝陶瓷表面连续导电金膜的制备工艺及性能[J]. 材料导报, 2021, 35(8): 8076-8081.
[11] 郦其乐, 杨勇, 魏玉全, 刘盟, 周洪军, 霍同林, 黄政仁. 不同B/C摩尔比碳化硼薄膜的光学性能[J]. 材料导报, 2021, 35(2): 2006-2011.
[12] 余登德, 张仁耀, 沈月, 闻明, 刘洪喜1,. 混合表面纳米化制备钛表面Ru/Ti薄膜的结构及耐蚀性能[J]. 材料导报, 2020, 34(24): 24086-24091.
[13] 吴珊妮, 赵远, 姜宏, 文峰, 熊春荣. 具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建[J]. 材料导报, 2020, 34(2): 2023-2028.
[14] 汪国军, 白煜, 胡少杰, 张敏, 王书蓓, 万飞. 退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响[J]. 材料导报, 2019, 33(Z2): 56-60.
[15] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed