Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 25020183-9    https://doi.org/10.11896/cldb.25020183
  无机非金属及其复合材料 |
耐高温氧化铝基纳米棒气凝胶的制备与性能研究
陈伟, 侯思凡, 王伟, 范锦鹏*
北京理工大学先进结构技术研究院,北京 100081
Synthesis and Properties of High-temperature-resistant Alumina-based Nanorod Aerogels
CHEN Wei, HOU Sifan, WANG Wei, FAN Jinpeng*
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
下载:  全 文 ( PDF ) ( 54256KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 气凝胶一直以来都被视为航天器热防护系统中极具潜力的候选材料。以往的氧化铝气凝胶主要由纳米颗粒构成,当温度超过1 200 ℃时,这些颗粒往往会转变为α-Al2O3,并伴随着骨架粗化与孔隙坍塌。本工作使用勃姆石微米粉这一廉价的无机原料,利用水热过程中酸根阴离子在勃姆石表面的吸附作用,合成了澄清透明的勃姆石纳米棒溶胶。随后运用溶胶凝胶法使纳米棒相互搭接,成功制备了具有良好耐热性能的氧化铝基纳米棒气凝胶。本工作对该气凝胶在高温条件下的微结构演化过程进行了研究,并探讨了影响其热稳定性的多种因素。结果表明,所制备的气凝胶展现出优良的综合性能,包括良好的耐热性(可承受1 400 ℃的高温)、极低的热导率(0.016 80~0.025 36 W·m-1·K-1)、低密度(0.090 9~0.097 5 g·cm-3)。本工作的成果有望推动航天器热防护材料领域的技术进步与创新发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈伟
侯思凡
王伟
范锦鹏
关键词:  氧化铝气凝胶  勃姆石纳米棒  水热反应  耐高温    
Abstract: Aerogels have long been considered a highly promising material for aerospace thermal protection systems. Conventional alumina aerogels, composed primarily of nanoparticles, tend to undergo phase transformation to α-Al2O3 at temperatures exceeding 1 200 ℃, accompanied by skeleton coarsening and pore collapse. In this study, we utilized inexpensive inorganic raw materials, boehmite micropowders, and leveraged the adsorption of anionic groups on the boehmite surface during the hydrothermal process to synthesize transparent boehmite nanorod sols. Subsequently, we employed the sol-gel method to interconnect these nanorods, successfully fabricating alumina-based nanorod aerogels with excellent thermal stability. The study investigated the microstructural evolution of these aerogels under high-temperature conditions and explored various factors influencing their thermal stability. The experimental results demonstrated that the synthesized aerogels exhibit outstanding comprehensive performance, including excellent heat resistance (withstand temperatures up to 1 400 ℃), ultra-low thermal conductivity (0.016 80—0.025 36 W·m-1·K-1), and low density (0.090 9—0.097 5 g·cm-3). These findings hold great promise for advancing technological progress and innovation in the field of aerospace thermal protection materials.
Key words:  alumina aerogel    boehmite nanorods    hydrothermal reaction    high-temperature resistance
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TB32  
通讯作者:  * 范锦鹏,博士,北京理工大学教授、博士研究生导师。主要研究方向为先进功能复合材料结构制造技术。fanjp@bit.edu.cn   
作者简介:  陈伟,北京理工大学先进结构技术研究院硕士研究生,在范锦鹏教授的指导下开展防隔热材料的研究。
引用本文:    
陈伟, 侯思凡, 王伟, 范锦鹏. 耐高温氧化铝基纳米棒气凝胶的制备与性能研究[J]. 材料导报, 2026, 40(1): 25020183-9.
CHEN Wei, HOU Sifan, WANG Wei, FAN Jinpeng. Synthesis and Properties of High-temperature-resistant Alumina-based Nanorod Aerogels. Materials Reports, 2026, 40(1): 25020183-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25020183  或          https://www.mater-rep.com/CN/Y2026/V40/I1/25020183
1 Cai H, Jiang Y, Chen Q, et al. Journal of the European Ceramic Society, 2020, 40, 127.
2 Liu Y, Zhao Z, Kong Y, et al. Ceramics International, 2022, 48, 27486.
3 Zhang R, Gu H, Hou X, et al. Journal of Porous Materials, 2021, 28, 57.
4 Wang X, Zhang Z, Wang Y, et al. Advanced Composites and Hybrid Materials, 2023, 6(1), 32.
5 Wang X B, Luan Z Q, Li K, et al. Materials Reports, 2018, 32(13), 2214 (in Chinese).
王馨博, 栾志强, 李凯, 等. 材料导报, 2018, 32(13), 2214.
6 Ding Y, Yang L, Yang M, et al. Ceramics International, 2023, 49, 38058.
7 Yang M, Li X, Chen Z, et al. Ceramics International, 2023, 49, 9165.
8 Wen P G, Chao X Y, Yuan W H, et al. Materials Reports, 2016, 30(17), 51 (in Chinese).
温培刚, 巢雄宇, 袁武华, 等. 材料导报, 2016, 30(17), 51.
9 An Z, Zhang R, Fang D. Ceramics International, 2019, 45, 11368.
10 Li Y, Liu X, Dong L, et al. Ceramics International, 2022, 48, 36287.
11 Chen F, Zhang J, Li N, et al. Materials & Design, 2018, 144, 281.
12 Guo J, Fu S, Deng Y, et al. Nature, 2022, 606, 909.
13 Feng Q, Cai H, Lin H, et al. Nanotechnology, 2018, 29(7), 075702.
14 Dang W, Wang B, Xu Z, et al. Journal of Non-Crystalline Solids, 2023, 600, 122031.
15 Peng F, Jiang Y, Feng J, et al. Journal of the American Ceramic Society, 2022, 105, 2288.
16 Zu G, Shen J, Wang W, et al. Chemistry of Materials, 2014, 26, 5761.
17 Peng F, Jiang Y, Feng J, et al. Journal of the European Ceramic Society, 2020, 40, 2480.
18 Wang W, Zhang Z, Zu G, et al. RSC Advances, 2014, 4, 54864.
19 Cai H, Jiang Y, Feng J, et al. Ceramics International, 2020, 46, 12489.
20 Pakharukova V P, Shalygin A S, Gerasimov E Y, et al. Journal of Solid State Chemistry, 2016, 233, 294.
21 Peng F, Jiang Y, Liu F, et al. Ceramics International, 2022, 48, 16232.
22 Zhang E, Zhang W, Lv T, et al. ACS Applied Materials & Interfaces, 2021, 13, 20548.
23 Bell T E, Gonzalez-Carballo J M, Tooze R P, et al. RSC Advances, 2017, 7, 22369.
24 Jiao W, Wu X, Xue T, et al. Crystal Growth & Design, 2016, 16, 5166.
25 Wu X, Shao G, Cui S, et al. Ceramics International, 2016, 42, 874.
26 Wang X, Tian Y, Yu C, et al. Ceramics International, 2022, 48, 17261.
27 Yang J, Wang Q, Wang T, et al. RSC Advances, 2016, 6, 26271.
28 Gao S, Yang T, Liu S, et al. Journal of Sol-Gel Science and Technology, 2024, 109, 162.
29 Yu H, Tong Z, Yue S, et al. Journal of the European Ceramic Society, 2021, 41, 580.
30 Yang J, Wang Q, Wang T, et al. Journal of Porous Materials, 2017, 24, 889.
[1] 任永忠, 舒天浩, 李鑫林, 张振宇, 梁补女, 李天义, 金志华. 基于化学刻蚀法构筑超疏水沙子表面及其性能研究[J]. 材料导报, 2025, 39(6): 23050086-5.
[2] 王闯闯, 庞学玉, 汪海阁, 黄贤斌, 吕开河, 孙金声. 240 ℃下水合陶瓷体系的耐高温性能及其影响因素[J]. 材料导报, 2025, 39(21): 24100050-7.
[3] 张思钊, 刘淳, 姜勇刚, 冯坚. 聚酰亚胺气凝胶的耐高温性能研究进展[J]. 材料导报, 2024, 38(13): 23040260-11.
[4] 吉贝贝, 吴楠, 刘姣, 廖维, 吕家杰, 尹昌平, 邢素丽. 高性能邻苯二甲腈树脂分子结构调控研究进展[J]. 材料导报, 2023, 37(S1): 23030102-10.
[5] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[6] 张城皓, 王硕珏, 田琳, 谷潇夏, 曹可, 张龙, 马灿坤, 王连才, 马慧玲, 张秀芹. 环氧树脂/碳化硼复合材料耐辐射和热老化性能研究[J]. 材料导报, 2023, 37(23): 22040049-6.
[7] 陈楚童, 罗永明, 徐彩虹. 硅基陶瓷前驱体用于耐高温连接材料研究进展[J]. 材料导报, 2023, 37(11): 21060160-9.
[8] 张勇, 高相东, 姚佳祺, 吴永庆, 赵祥. SiO2-Al2O3气凝胶及纤维增强复合材料制备技术研究进展[J]. 材料导报, 2022, 36(23): 21030207-9.
[9] 赵立伟, 杨海冬, 王德志, 曲春艳, 冯浩, 李洪峰, 肖万宝. 双马来酰亚胺树脂增韧改性研究进展[J]. 材料导报, 2022, 36(20): 21020082-7.
[10] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[11] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[12] 范翠红, 秦会斌, 周继军. 酚醛树脂在铝基板上的应用[J]. 材料导报, 2021, 35(z2): 589-592.
[13] 曹成昊, 郭安然, 刘家臣, 张军军. 复合树脂/空心微珠耐高温浮力材料的制备及性能[J]. 材料导报, 2021, 35(2): 2185-2190.
[14] 刘璇, 徐红艳, 李红, 徐菊, Hodúlová Erika, Kovaříková Ingrid. 应用于功率芯片封装的瞬态液相扩散连接材料与接头可靠性研究进展[J]. 材料导报, 2021, 35(19): 19116-19124.
[15] 瑚佩, 姜勇刚, 张忠明, 冯军宗, 李良军, 冯坚. 耐高温、高强度隔热复合材料研究进展[J]. 材料导报, 2020, 34(7): 7082-7090.
[1] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[2] ZHANG Libo, WANG Lu, QU Wenwen, XU Shengming, ZHANG Jialin. Research and Development of Petroleum Hydrodesulfurization Catalysts with Al2O3-based Supports[J]. Materials Reports, 2018, 32(5): 772 -779 .
[3] SHI Yu, GAO Haiming, LI Guang, LI Xiang. High Frequency Induction Brazing Process of Copper-Steel and Its Effects on Microstructure and Electrical Conductivity of Weld Joint[J]. Materials Reports, 2018, 32(6): 909 -914 .
[4] MIN Fanfei, PENG Chenliang, LIU Lingyun, WANG Qingping. Interfacial Hydrophobicity Modification of Fine Montmorillonite Particles: A Mechanism Study[J]. Materials Reports, 2017, 31(16): 150 -155 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang. First-principles Calculations of Electronic Structures and Elastic Properties of 14H-LPSO and W Phases in Mg-Zn-Y Alloy[J]. Materials Reports, 2018, 32(6): 1026 -1031 .
[6] NIU Ditao, LU Yao, LIU Xiguang. A Review on Sulfuration Properties of Concrete[J]. Materials Reports, 2017, 31(23): 163 -170 .
[7] YE Changfu, ZHENG Huiyuan, LAO Ming, ZHOU Wenzheng, GUO Jin, LI Guangxu. Effect of Transition Metal Ions Doping on the Performance of LiFePO4/C Cathode Material[J]. Materials Reports, 2017, 31(2): 29 -32 .
[8] WANG Yanfeng, ZHAO Xiaohua, LI Gengying. Influence of Dry/Wet State Variation on Piezoresistivity of Multi-walled Carbon Nanotube Reinforced Cement Mortar[J]. Materials Reports, 2017, 31(24): 20 -25 .
[9] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
[10] HU Shaozheng, WANG Fei, LI Zheng, MA Hongfei, LI Ping. Construction of Full-spectrum-driven W18O49/g-C3N4 Heterojunction Catalyst with Outstanding Photocatalytic Organic Dyestuff Degradation Ability[J]. Materials Reports, 2021, 35(8): 8011 -8016 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed