Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 25010030-10    https://doi.org/10.11896/cldb.25010030
  高分子与聚合物基复合材料 |
HTPB推进剂贮存老化行为机制及防老化研究进展
孙雪莹1, 谢丽娜1, 霍文龙1, 李钧卓2, 夏德斌1, 张健1, 林凯峰1, 杨玉林1,*
1 哈尔滨工业大学化工与化学学院,哈尔滨 150000
2 西安近代化学研究所,西安 710065
Advances in the Aging Mechanism and Anti-aging Strategies of HTPB Propellant During Storage
SUN Xueying1, XIE Lina1, HUO Wenlong1, LI Junzhuo2, XIA Debin1, ZHANG Jian1, LIN Kaifeng1, YANG Yulin1,*
1 School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China
2 Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
下载:  全 文 ( PDF ) ( 12653KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文综述了端羟基聚丁二烯(HTPB)固体推进剂的老化研究进展,涵盖宏观与微观性能变化、老化过程影响因素、老化机理及延缓老化策略。通过研究HTPB推进剂在老化过程中的性能变化,分析老化过程的主要影响因素,揭示其内在老化机理,总结现阶段防老化研究成果。HTPB推进剂在老化过程中,微观层面表现为分子链的断裂、氧化和交联反应,分子链变化引发微观相结构变化,导致聚合物结构变化;在宏观层面体现为力学性能显著下降、弹性模量增加以及断裂伸长率降低等方面。进一步分析发现,推进剂老化过程受贮存环境及配方组分等因素的共同影响,老化过程中生成的活性物质和自由基不断攻击丁羟高分子链,诱发一系列化学反应并加速材料退化。现阶段主要通过选择合适防老剂的方式,延缓HTPB推进剂的老化,但其加入后可能对推进剂自身性能产生负面影响,以及对其他性能的影响仍是不可忽视的问题。因此,从推进剂老化的机理出发,开发新型防老剂,同时开发新型测试手段,实现HTPB推进剂精准、无损监测将会成为研究的重点方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙雪莹
谢丽娜
霍文龙
李钧卓
夏德斌
张健
林凯峰
杨玉林
关键词:  HTPB推进剂  老化行为  老化机制  防老化    
Abstract: This paper reviewed the research progress on the aging behavior of hydroxyl-terminated polybutadiene (HTPB) solid propellant, focusing on its macro- and micro-scale performance changes, influencing factors, aging mechanisms, and anti-aging strategies. By analyzing the performance degradation of HTPB propellant during aging, the key influencing factors were identified, the intrinsic aging mechanisms were elucidated, and the latest anti-aging strategies were summarized. At the microscopic level, the aging process is characterized by molecular chain scission, oxidation, and cross-linking reactions, which alter the microphase structure and disrupt the polymer network. At the macroscopic level, significant mechanical degradation is observed, including an increase in elastic modulus and a decrease in elongation at break. Further investigation reveals that the aging process is influenced by storage conditions, formulation composition, and environmental factors. The active species and free radicals generated during aging continuously attack the HTPB polymer chains, inducing a cascade of chemical reactions that accelerates material degradation. Current anti-aging strategies primarily focus on the incorporation of antioxidants; however, their addition may negatively affect other critical properties of the propellant, posing challenges in maintaining overall performance stability. Therefore, future research should focus on understanding the fundamental aging mechanisms, developing novel anti-aging agents, and advancing non-destructive and high-precision monitoring techniques to ensure the long-term reliability and safety of HTPB propellants.
Key words:  HTPB propellant    aging behavior    aging mechanism    anti-aging
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  V512  
基金资助: 黑龙江省自然科学基金青年基金(YQ2024B004)
通讯作者:  * 杨玉林,哈尔滨工业大学化工与化学学院教授、博士研究生导师。主要研究方向:(1)固体化学动力技术;(2)钙钛矿太阳能电池新材料与器件。ylyang@hit.edu.cn   
作者简介:  孙雪莹,哈尔滨工业大学化工与化学学院博士研究生,在杨玉林教授的指导下进行研究。目前主要研究领域为HTPB固体推进剂老化研究。
引用本文:    
孙雪莹, 谢丽娜, 霍文龙, 李钧卓, 夏德斌, 张健, 林凯峰, 杨玉林. HTPB推进剂贮存老化行为机制及防老化研究进展[J]. 材料导报, 2026, 40(1): 25010030-10.
SUN Xueying. Advances in the Aging Mechanism and Anti-aging Strategies of HTPB Propellant During Storage. Materials Reports, 2026, 40(1): 25010030-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010030  或          https://www.mater-rep.com/CN/Y2026/V40/I1/25010030
1 Klager K, Wrightson J M. Mechanics and Chemistry of Solid Propellants, 1967, 47.
2 Du Y Q, Zheng J, Peng W, et al. Chemical Industry and Engineering Progress, 2017, 40(1), 81(in Chinese).
杜永强, 郑坚, 彭威, 等. 固体火箭技术, 2017, 40(1), 81.
3 Bihari B K, Kumaraswamy A, Jain M, et al. Propellants, Explosives, Pyrotechnics, 2022, 47, 6.
4 Liu C W, Yang J H, Zhang H, et al. Aerospace Shanghai, 2011, 28(3), 69 (in Chinese).
刘承武, 阳建红, 张晖, 等. 上海航天, 2011, 28(3), 69.
5 Ren N L, Zhao X Q, Zhang Y W, et al. Journal of Propulsion Technology, 2010, 33(5), 590.
任宁莉, 赵新强, 张彦伟, 等. 固体火箭技术, 2010, 33(5), 590.
6 Cheng Z B. Applied study of solid propellants aging performance detection by FTIR. Master's Thesis, Beijing Institute of Technology, China, 2016 (in Chinese).
程子兵. FITR在固体推进剂老化性能检测中的应用研究. 硕士学位论文, 北京理工大学, 2016.
7 Harris D J, Assink R A, Celina M. Macromolecules, 2001, 34(19), 6695.
8 Wei X Q, Liu W, Liu J, et al. Equipment Environmental Engineering, 2013(5), 52 (in Chinese).
魏小琴, 刘伟, 刘俊, 等. 装备环境工程, 2013(5), 52.
9 Zhang L K, Yu Y G, Liu D Y, et al. Chinese Journal of Energetic Materials, 2015, 23(3), 253 (in Chinese).
张领科, 余永刚, 刘东尧, 等. 含能材料, 2015, 23(3), 253.
10 Dong K H, Pei L G, Kong L Z, et al. Journal of Solid Rocket Technology, 2019, 42(3), 403 (in Chinese).
董可海, 裴立冠, 孔令泽, 等. 固体火箭技术, 2019, 42(3), 403.
11 Wang G Q, Shi A J, Ding L, et al. Chinese Journal of Explosives & Propellant, 2015, 38(1), 47.
王国强, 史爱娟, 丁黎, 等. 火炸药学报, 2015, 38(1), 47.
12 Yuan J, Liu J, Zhou Y, et al. Journal of Thermal Analysis and Calorimetry, 2021, 143(6), 3935.
13 Zhang L K, Zheng X Y. Acta Armamentaria, 2018, 014(5), 422.
14 Wu W J, Fan Z J, Yuan J H, et al. Journal of Solid Rocket Technology, 2022, 45(2), 237 (in Chinese).
吴伟静, 樊自建, 袁杰红, 等. 固体火箭技术, 2022, 45(2), 237.
15 Bai F, Yang X H, Zeng G W, et al. Journal of Propulsion Technology, 2023, 44(1), 274 (in Chinese).
白凡, 杨新华, 曾国伟, 等. 推进技术, 2023, 44(1), 274.
16 Liu C, Wang Z J, Qiang H F, et al. Journal of Astronautics, 2020, 41(3), 353.
17 Yang G, Chi X H, Cao R, et al. Chemical Propellants & Polymeric Materials, 2017, 15(5), 58 (in Chinese).
杨根, 池旭辉, 曹蓉, 等. 化学推进剂与高分子材料, 2017, 15(5), 58.
18 Jalocha D. Mechanics of Materials, 2020, 148, 103526.
19 Fuente J L, Rodríguez O. Journal of Applied Polymer Science, 2003, 87(14), 2397.
20 Wang Z, Qiang H, Wang T, et al. Mechanics of Time-dependent Materials, 2020, 24(2), 24.
21 Du J J, Jia L, Wang F F, et al. Chinese Journal of Energetic Materials, 2019, 27(12), 1017 (in Chinese).
杜姣姣, 贾林, 王芳芳, 等. 含能材料, 2019, 27(12), 1017.
22 Guo Z H. The aging performance of HTPB solid propellant. Master's Thesis, Harbin Institute of Technology, China, 2021 (in Chinese).
郭子涵. HTPB固体推进剂的老化性能研究. 硕士学位论文, 哈尔滨工业大学, 2021.
23 Selvakumar S, Rao G S, Reddy K A. Propellants, Explosives, Pyrotechnics, 2021, 46(5), 782.
24 Nagle D J, Celina M, Rintoul L, et al. Polymer Degradation and Stability, 2007, 92(8), 1446.
25 Wang X Y, Zhang Y J, Sui X, et al. Journal of Solid Rocket Technology, 2019, 42(4), 471 (in Chinese).
王昕远, 张亚俊, 隋欣, 等. 固体火箭技术, 2019, 42(4), 471.
26 Wang Z, Qiang H, Wang T, et al. Mechanics of Time-dependent materials, 2020, 24(2), 141.
27 Wei X Y, Suling Z. Guangdong Chemical Industry, 2016, 43, 100.
28 Xu X W, Xin W Q, Ni B H, et al. Journal of Naval Aeronautical and Astronautical University, 2015, 30(4), 349 (in Chinese).
徐学文, 辛庆伟, 倪保航, 等. 海军航空工程学院学报, 2015, 30(4), 349.
29 Zhou Q C, Xu J S, Chen X, et al. The Journal of Adhesion, 2016, 92(5), 402.
30 Zhang X G, Zhang W. In:National Conference on Composite Materials(NCCM-16). Changsha, 2010, pp. 190 (in Chinese).
张兴高, 张炜. 第十六届全国复合材料学术年会(NCCM-16). 长沙, 2010, pp. 190.
31 Kang Y, Chen Z Q, Chen M, et al. Journal of Solid Rocket Technology, 2015, 38(4), 519 (in Chinese).
康莹, 陈智群, 陈曼, 等. 固体火箭技术, 2015, 38(4), 519.
32 Harris D J, Assink R A, Celina M. Macromolecules, 2001, 34(19), 6695.
33 Tang Y H, Dong K H, Zhang C L, et al. Ship Electronic Engineering, 2018, 38(1), 112 (in Chinese).
唐岩辉, 董可海, 张春龙, 等. 舰船电子工程, 2018, 38(1), 112.
34 Zeng Y, Huang W, Chen J, et al. Propellants, Explosives, Pyrotechnics, 2024, 49(6), e202300311.
35 Zhang X J, Xing P T, Zhu J J, et al. Equipment Environmental Engineering, 2022, 19(2), 45 (in Chinese).
张晓军, 邢鹏涛, 朱佳佳, 等. 装备环境工程, 2022, 19(2), 45.
36 Zhou D M. Aging mechanism of HTPB propellant under constant strain and life prediction of solid rocket motors. Ph. D. Thesis, Beijing Institute of Technology, China, 2021 (in Chinese).
周东谟. 定应变下HTPB推进剂老化机理及发动机寿命预估研究. 博士学位论文, 北京理工大学, 2021.
37 Gligorijević N I, Rodić V Ž, Živković S Ž, et al. Hemijska Industrija, 2016, 70(5), 581.
38 Li Y Q, Li G C, Kong L Z, et al. Polymer Degradation and Stability, 2024, 225, 110812.
39 Iqbal M M, Liang W. Aerospace Science and Technology, 2006, 10(8), 695.
40 DeLuca L T, Gromov A, Perut C. Chemical rocket propulsion-a comprehensive survey of energetic materials, Springer, Switzerland, 2016, pp. 992.
41 Du Y Q, Zheng J, Yu G B. Defence Technology, 2021, 17(4), 387.
42 Gligorijevic N I, Rodić V Ž, Živković S Ž, et al. Hemijska Industrija, 2016, 70(5), 581.
43 Selvakumar S, Rao G, Sreenivasa R, et al. Propellants, Explosives, Pyrotechnics, 2021, 46(5), 782.
44 Li X C, Jiao J, Yao J, et al. Journal of Xi'an Technological University, 2010, 30(3), 258 (in Chinese).
李旭昌, 焦剑, 姚军, 等. 西安工业大学学报, 2010, 30(3), 258.
45 Guo Y H. Research on the correlation of macro-micro aging characteristics of HTPB solid propellant. Master's Thesis, Beijing Institute of Technology, China, 2018 (in Chinese).
郭颖慧. HTPB固体推进剂老化特性宏观-微观相关性研究. 硕士学位论文, 北京理工大学, 2018.
46 Guo Y, Shen Z B, Li H Y, et al. Journal of National University of Defense Technology, 2023, 45(1), 95 (in Chinese).
郭宇, 申志彬, 李海阳, 等. 国防科技大学学报, 2023, 45(1), 95.
47 Yu C, Dong K H, Pei L G, et al. Ship Electronic Engineering, 2017, 37(12), 87 (in Chinese).
于畅, 董可海, 裴立冠, 等. 舰船电子工程, 2017, 37(12), 87.
48 Celina M, George G A. Polymer Degradation and Stability, 1995, 48(2), 297.
49 Gottlieb L, Bar S. Propellants, Explosives, Pyrotechnics, 2003, 28(1), 12.
50 Coquillat M, Verdu J, Colin X, et al. Polymer Degradation & Stability, 2007, 92(7), 1334.
51 Coutinho F M B, Delpech M C, Alves T L, et al. Polymer Degradation and Stability, 2003, 81(1), 19.
52 Guo X, Man S, Li Y, et al. Materials Letters, 2023, 347, 134533
53 Lu J, Chen C, Zhang B, et al. Scientific Reports, 2024, 14(1), 98.
54 Yang J, Ling L, Li Y X, et al. Acta Chimica Sinica, 2023, 81(4), 328 (in Chinese).
杨洁, 凌琳, 李玉学, 等. 化学学报, 2023, 81(4), 328.
55 Zhang X G. Study on the aging properties and storage life prediction of HTPB propellant. Ph. D. Thesis, National University of Defense Technology, China, 2009(in Chinese).
张兴高. HTPB推进剂贮存老化特性及寿命预估研究. 博士学位论文, 国防科学技术大学, 2009.
56 Xu B C, Yang T C, Yang Y, et al. Journal of Ordnance Equipment Engineering, 2017, 38(2), 168(in Chinese).
许兵朝, 杨天成, 杨一, 等. 兵器装备工程学报, 2017, 38(2), 168.
57 Li Y, Wang D C, Liu F X, et al. China Synthetic Rubber Industry, 1995(1), 32 (in Chinese).
李杨, 王德充, 刘凤香, 等. 合成橡胶工业, 1995(1), 32.
[1] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[2] 王旋, 宋凯强, 张敏, 丛大龙, 彭冬, 丁星星, 白懿心, 黄安畏, 李忠盛. 锆钛酸铅压电陶瓷元件高温老化行为及其微观机制[J]. 材料导报, 2023, 37(18): 21110230-8.
[3] 熊亚, 江猛, 李宜航, 吴江兵, 杨航, 熊玉竹. 白炭黑负载抗氧剂在天然橡胶中的分散性及防老化作用[J]. 材料导报, 2021, 35(6): 6200-6205.
[1] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[2] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[3] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
[4] SHANG Genfeng, HUANG Jiapeng, WANG Hang. Study on Cyclic Oxidation Behavior of Y and La Modified Ni-10Cr-5Al Alloys[J]. Materials Reports, 2018, 32(4): 584 -588 .
[5] LI Yanli, XU Zhuang, LI Hui, KONG Xiangdong, HAN Li, ZHANG Xuena. Preparation of ZnO Thin Films by Electron Beam Annealing Method[J]. Materials Reports, 2017, 31(2): 41 -45 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] CHEN Yajun, YU Jiaqi, ZHAO Jieyu, WANG Fusheng. Research and Development of High Temperature Solid Self-lubricanting Coating Prepared by Magnetron Sputtering[J]. Materials Reports, 2017, 31(3): 32 -37 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] XIE Fei, WANG Dan, WU Ming, ZONG Yue, YUAN Shijiao, SHEN Hongjuan, LI Rui. Effect of Sulfate Reducing Bacteria in Seawater on Corrosion Behavior of Q235 Steel[J]. Materials Reports, 2017, 31(8): 51 -55 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed