Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24010198-9    https://doi.org/10.11896/cldb.24010198
  无机非金属及其复合材料 |
含水状态对硅质胶结砂岩抗拉特性的影响及颗粒流模拟
朱作祥1,2, 骆祚森1,2,*, 李建林1,2, 邓华锋1,2, 王乐华1,2
1 三峡库区地质灾害教育部重点实验室(三峡大学),湖北 宜昌 443002
2 三峡大学土木与建筑学院,湖北 宜昌 443002
Influence of Water-bearing State on Tensile Properties of Siliceous Cemented Sandstone and Particle Flow Simulation
ZHU Zuoxiang1,2, LUO Zuosen1,2,*, LI Jianlin1,2, DENG Huafeng1,2, WANG Lehua1,2
1 Key Laboratory of Geological Hazards on Three Gorges Reservoir Area (China Three Gorges University), Ministry of Education, Yichang 443002, Hubei, China
2 College of Civil Engineering & Architecture, China Three Gorges University, Yichang 443002, Hubei, China
下载:  全 文 ( PDF ) ( 68714KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究含水砂岩胶结微细观结构特征变化与抗拉特性的关系和影响机制,以三峡库区常见的硅质胶结砂岩为研究对象,开展不同含水状态下砂岩的巴西劈裂试验及微细观结构测试;基于室内试验结果,提出含水砂岩胶结软化的颗粒流数值模拟方法,开展砂岩劈裂数值模拟分析。结果表明:(1)含水状态对砂岩的抗拉强度和破坏特征均会产生影响。从干燥到饱水状态,砂岩抗拉强度下降了49.93%,破坏形态由沿中线笔直断裂向沿中线弧状弯曲断裂转变。(2)微细观测试结果发现,随含水率增大,砂岩劈裂断面的穿颗粒断裂破坏形式逐渐减少,转化为穿颗粒断裂与沿颗粒断裂复合破坏形式,很好地解释了砂岩宏观破坏特征随含水率的变化规律。(3)试验砂岩胶结物中存在增生型和沉淀型两种硅质胶结物,增生型胶结基本不受含水状态的影响,而沉淀型胶结易遇水软化,是砂岩抗拉强度随含水率变化的重要原因。(4)PFC3D模拟发现,随沉淀型胶结软化程度的增加,试样裂纹起裂点逐渐提前,沉淀型胶结断裂逐渐取代增生型胶结断裂,最大接触力不断减小,抗拉强度呈降低趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱作祥
骆祚森
李建林
邓华锋
王乐华
关键词:  岩石力学  巴西劈裂试验  含水率  砂岩  微细观结构  离散元法    
Abstract: To explore the relationship and influence mechanism between the change of microstructure characteristics and tensile properties of water-bea-ring sandstone cementation, the Brazilian splitting test and microstructure test were carried out to siliceous cemented sandstone under diffe-rent water-bearing conditions in the Three Gorges Reservoir area. Based on the indoor test results, a particle flow numerical simulation method for cementation softening of water-bearing sandstone was proposed to fulfil the sandstone splitting simulation analysis. The results show that: (1) The water-bearing state affects the tensile strength and failure characteristics of sandstone. From dry to saturated state, sandstone tensile strength decreased by 49.93%, and the failure mode changed from straight fracture along the midline to curved fracture along the midline. (2) The microscopic test results show that with the increase of water content, the failure mode of transgranular fracture of sandstone splitting section gradually decreases, and it is transformed into the composite failure mode of transgranular fracture and intergranular fracture, which well explains the variation in macroscopic failure characteristics of sandstone with water content. (3) There are two kinds of siliceous cements in the tested sandstone cements, namely, the proliferative type and the precipitated type. The proliferative type is generally not affected by water content, while the precipitated type is easily softened by water. This is a major reason for the change in the tensile strength of sandstone with water content. (4) PFC3D simulation results show that with the increase of the softening degree of precipitated cementation, the crack initiation point of the sample gradually advances, the precipitated cementation fracture gradually replaces the proliferative cementation fracture, and the maximum cementation contact force decreases continuously, then the final tensile strength shows a decreasing trend.
Key words:  rock mechanics    Brazilian splitting test    water content    sandstone    micro-structure    discrete element method (DEM)
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TU451  
基金资助: 国家自然科学基金(U22A20600;U2034203)
通讯作者:  *骆祚森,三峡大学土木与建筑学院讲师、硕士研究生导师。目前主要从事岩土工程的研究工作。lzs@ctgu.edu.cn   
作者简介:  朱作祥,现为三峡大学土木与建筑学院博士研究生,在李建林教授和骆祚森讲师的指导下进行研究。目前主要研究领域为岩土工程。
引用本文:    
朱作祥, 骆祚森, 李建林, 邓华锋, 王乐华. 含水状态对硅质胶结砂岩抗拉特性的影响及颗粒流模拟[J]. 材料导报, 2025, 39(9): 24010198-9.
ZHU Zuoxiang, LUO Zuosen, LI Jianlin, DENG Huafeng, WANG Lehua. Influence of Water-bearing State on Tensile Properties of Siliceous Cemented Sandstone and Particle Flow Simulation. Materials Reports, 2025, 39(9): 24010198-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010198  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24010198
1 Hawkins A B, Mcconnell B J. Quarterly Journal of Engineering Geology and Hydrogeology, 1992, 25(2), 115.
2 Vásárhelyi B, Ván P. Engineering Geology, 2006, 84(1-2), 70.
3 Qin H, Huang G, Wang W Z. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6), 1115 (in Chinese).
秦虎, 黄滚, 王维忠. 岩石力学与工程学报, 2012, 31(6), 1115.
4 Jiang J D, Chen S S, Xu J, et al. Journal of China Coal Society, 2018, 43(8), 2217 (in Chinese).
蒋景东, 陈生水, 徐婕, 等. 煤炭学报, 2018, 43(8), 2217.
5 Wang H, Yang T H, Liu H L, et al. Rock and Soil Mechanics, 2017, 38(6), 1600 (in Chinese).
汪泓, 杨天鸿, 刘洪磊, 等. 岩土力学, 2017, 38(6), 1600.
6 You M Q, Chen X L, Su C D. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(3), 464 (in Chinese).
尤明庆, 陈向雷, 苏承东. 岩石力学与工程学报, 2011, 30(3), 464.
7 Chang H M, Zhao D, Cai T T, et al. Mining Research and Development, 2022, 42(2), 94 (in Chinese).
常海明, 赵东, 蔡婷婷, 等. 矿业研究与开发, 2022, 42(2), 94.
8 Teng J Y, Tang J X, Zhang C. Rock and Soil Mechanics, 2018, 39(4), 1317 (in Chinese).
腾俊洋, 唐建新, 张闯. 岩土力学, 2018, 39(4), 1317.
9 Jia H L, Wang T, Xiang W, et al. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7), 1618 (in Chinese).
贾海梁, 王婷, 项伟, 等. 岩石力学与工程学报, 2018, 37(7), 1618.
10 Guo N, Yang Y, Liang P F, et al. Materials Reports, 2023, 37(S2), 272 (in Chinese).
郭宁, 杨逾, 梁鹏飞, 等. 材料导报, 2023, 37(S2), 272.
11 Tang C X, Yan F, Kong C Y, et al. Materials Reports, 2023, 37(S2), 278(in Chinese).
汤长西, 颜峰, 孔垂元, 等. 材料导报, 2023, 37(S2), 278.
12 Zhang J F, Cheng S F, Wang H, et al. Coal Geology & Exploration, 2020, 48(3), 116 (in Chinese).
张嘉凡, 程树范, 王焕, 等. 煤田地质与勘探, 2020, 48(3), 116.
13 Wen M, Chen Z, Xu J Y, et al. Journal of Underground Space and Engineering, 2017, 13(1), 86 (in Chinese).
闻名, 陈震, 许金余, 等. 地下空间与工程学报, 2017, 13(1), 86.
14 Huang Z G, Zuo Q J, Wu L, et al. Rock and Soil Mechanics, 2020, 41(9), 2931 (in Chinese).
黄智刚, 左清军, 吴立, 等. 岩土力学, 2020, 41(9), 2931.
15 Cai C Z, Li G S, Huang Z W, et al. Rock and Soil Mechanics, 2014, 35 ( 4 ), 965 (in Chinese).
蔡承政, 李根生, 黄中伟, 等. 岩土力学, 2014, 35(4), 965.
16 Li J L, Zhou K P, Liu W J, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(11), 2997.
17 Guo H M. Journal of Yangtze River Scientific Research Institute, 2020, 37(1), 90 (in Chinese).
郭慧敏. 长江科学院院报, 2020, 37(1), 90.
18 Liu W L, Yan E C, Dai H, et al. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2), 311(in Chinese).
柳万里, 晏鄂川, 戴航, 等. 岩石力学与工程学报, 2020, 39(2), 311.
19 Huang Y H, Yang S Q. Chinese Journal of Geotechnical Engineering, 2015, 37(5), 802(in Chinese).
黄彦华, 杨圣奇. 岩土工程学报, 2015, 37(5), 802.
20 Chen Y L, Chen Q J, Xiao P, et al. Chinese Journal of Solid Mechanics, 2022, 43(6), 703 (in Chinese).
陈有亮, 陈奇键, 肖鹏, 等. 固体力学学报, 2022, 43(6), 703.
21 Li H, Eshiet K I I, Sheng Y, et al. Engineering Fracture Mechanics, 2018, 202, 297.
22 Hu X J, Bian K, Liu J, et al. Chinese Journal of Geotechnical Engineering, 2021, 43(4), 725 (in Chinese).
胡训健, 卞康, 刘建, 等. 岩土工程学报, 2021, 43(4), 725.
23 Lin C M. Sedimentary petrology, Science Press, China, 2019, pp. 61 (in Chinese).
林春明. 沉积岩石学, 科学出版社, 2019, pp. 61.
24 Wang S Y, Zhang L K, Chen G X, et al. Materials Reports, 2021, 35(10), 10088 (in Chinese).
王舒永, 张凌凯, 陈国新, 等. 材料导报, 2021, 35(10), 10088.
25 Liu X R, Li D L, Zhang L, et al. Chinese Journal of Geotechnical Engineering, 2016, 38(7), 1291(in Chinese).
刘新荣, 李栋梁, 张梁, 等. 岩土工程学报, 2016, 38(7), 1291.
26 Zhang C, Bai Q S, Han P H. Bulletin of Engineering Geology and The environment, 2023, 82(5), 157.
27 Zou Y X, Zhou W, Chen Y, et al. Journal of Hydroelectric Power Gene-ration, 2020, 39(5), 17 (in Chinese).
邹宇雄, 周伟, 陈远, 等. 水力发电学报, 2020, 39(5), 17.
28 Wu M M, Wang J F. Engineering Geology, 2022, 296, 106444.
[1] 李大虎, 李晓丽, 赵晓泽, 郭长旭. 活化煤矸石粉对砒砂岩水泥复合土强度影响的试验研究[J]. 材料导报, 2025, 39(9): 24010148-6.
[2] 梁艳玲, 霍润科, 宋战平, 穆彦虎, 秋添, 宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型[J]. 材料导报, 2024, 38(8): 22080206-7.
[3] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[4] 温佳璐, 刘文静, 张明辉. 木材吸湿特性的研究方法[J]. 材料导报, 2024, 38(18): 23030197-9.
[5] 余宸, 田威, 王杰, 高晋峰. 砂型3D打印材料在岩体物理模型试验中的应用研究及展望[J]. 材料导报, 2024, 38(12): 22120133-9.
[6] 杨荣周, 徐颖, 刘家兴, 丁进甫, 谢昊天. 砂岩与类砂岩材料的动态力学及破坏特征对比分析[J]. 材料导报, 2023, 37(23): 22030265-11.
[7] 杨国梁, 毕京九, 董智文, 刘依, 韩子默, 李旭光. 基于数字图像相关技术的混杂纤维混凝土动态抗拉性能试验研究[J]. 材料导报, 2023, 37(21): 22030038-9.
[8] 宋学朋, 郝宇鑫, 王石, 刘晨晖, 张辽. 不同加载速率下差异性含水率尾砂胶结充填体力学行为及损伤特性研究[J]. 材料导报, 2022, 36(24): 21090173-10.
[9] 张新天, 姚鑫航, 蓝群力. 路用聚合物稳定碎石基层养生规律分析[J]. 材料导报, 2019, 33(Z2): 639-642.
[10] 王林峰,曾韬睿,翁其能. 基于统计损伤理论的饱和细粒砂岩本构模型研究[J]. 材料导报, 2019, 33(22): 3727-3731.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed