Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24010148-6    https://doi.org/10.11896/cldb.24010148
  无机非金属及其复合材料 |
活化煤矸石粉对砒砂岩水泥复合土强度影响的试验研究
李大虎, 李晓丽*, 赵晓泽, 郭长旭
内蒙古农业大学水利与土木建筑工程学院,呼和浩特 010018
Effect of Activated Gangue Powder on the Strength of Pisha Sandstone Cement Composite Soil
LI Dahu, LI Xiaoli*, ZHAO Xiaoze, GUO Changxu
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
下载:  全 文 ( PDF ) ( 9426KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 煤矸石的活性低,利用难度大。对此,本工作通过煅烧的方式提高煤矸石粉的火山灰活性,将其作为辅助胶凝材料用于砒砂岩水泥复合土的制备。借助X衍射、热重、红外和核磁等试验方法,首先对比了煅烧前后煤矸石粉-砒砂岩水泥复合土的抗压强度,分析了煤矸石粉对复合土水化产物及微观孔隙的影响。然后探究了煅烧温度对煤矸石粉的影响,分析了煤矸石的活化机理。结果表明:煅烧处理可促使煤矸石粉中的高岭石向偏高岭土转化及煤矸石粉中所含碳的脱去,进而提高其火山灰活性。其中经600 ℃煅烧后的煤矸石粉活性最高,可促进复合土内部更多C-S-H、C-A-S-H凝胶的产生,使强度增加;随着煤矸石粉量的增加和水泥含量的相对降低,最终使得复合土内产生的凝胶含量减少,导致其强度下降。当煤矸石粉煅烧温度为600 ℃,掺量为5%时,煤矸石粉-砒砂岩水泥复合土的孔隙度为2.322%,小孔占比与束缚流体饱和度分别为64.45%和56.246%,且7 d强度满足二级及二级以下公路底基层的强度要求,该研究可为煤矸石粉-砒砂岩水泥复合土在道路铺设中的应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李大虎
李晓丽
赵晓泽
郭长旭
关键词:  煤矸石粉  煅烧  砒砂岩  复合土  微观孔隙    
Abstract: The volcanic ash activity of coal gangue is extremely low, which limits its use as an auxiliary cementitious material for the preparation of Pisha sandstone cement composite soil. Therefore, this study aimed to improve the volcanic ash activity of gangue powder through calcination. First, the compressive strength of activated coal gangue-Pisha sandstone cement composite soil before and after calcination treatment was compared using X-ray diffraction, thermogravimetry, infrared and nuclear magnetic resonance, and other experimental methods. Furthermore, the influence of gangue powder on the hydration products and microscopic pores of the composite soil was analyzed. Second, the effect of calcining temperature on coal gangue powder was explored, and the activation mechanism of coal gangue was analyzed. The results showed that the calcination treatment can promote the conversion of kaolinite to metakaolin and the removal of carbon from gangue powder, thereby improving its volcanic ash activity. The gangue powder has the highest volcanic ash activity after calcination at 600 ℃, promoting the generation of more C-S-H and C-A-S-H gels inside the composite soil to increase its strength. However, increasing the amount of gangue powder and decreasing the cement content lead to a less gel content in the composite soil, which result in a decrease in its strength. With an addition of 5% gangue powder calcinated under 600 ℃, the porosity of gangue powder-Pisha sandstone cement composite soil was 2.322%, and the proportion of small pores and the saturation degree of bound fluid were 64.45% and 56.246%, respectively. Additionally, the 7 d strength of the composite soil meets the strength requirement for secondary road paving at the sub-base level and less than secondary highway. This study can provide a reference for the application of gangue powder-Pisha sandstone cement composite soil in road paving.
Key words:  gangue powder    calcination    Pisha sandstone    composite soil    microporosity
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TU525  
基金资助: 国家自然科学基金(51869022);内蒙古自然科学基金(2020MS05051)
通讯作者:  *李晓丽,内蒙古农业大学水利与土木建筑工程学院教授、博士研究生导师。目前主要从事岩土环境与固废资源化利用等方面的研究工作。nd-lxl@163.com   
作者简介:  李大虎,现为内蒙古农业大学水利与土木建筑工程学院硕士研究生,在李晓丽教授的指导下进行研究。目前主要研究领域为砒砂岩治理与固废资源化利用。
引用本文:    
李大虎, 李晓丽, 赵晓泽, 郭长旭. 活化煤矸石粉对砒砂岩水泥复合土强度影响的试验研究[J]. 材料导报, 2025, 39(9): 24010148-6.
LI Dahu, LI Xiaoli, ZHAO Xiaoze, GUO Changxu. Effect of Activated Gangue Powder on the Strength of Pisha Sandstone Cement Composite Soil. Materials Reports, 2025, 39(9): 24010148-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010148  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24010148
1 Feng Z J, Li X L, Shao X H, et al. Environmental Science and Pollution Research International, 2022, 30 (5), 12005.
2 Li X L, Zhao X Z, Shen X D. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12), 73(in Chinese).
李晓丽, 赵晓泽, 申向东. 农业工程学报, 2021, 37(12), 73.
3 Wu S Y, Li X L, Chang P, et al. Journal of Drainage and Irrigation Machinery, 2019, 37(12), 1093(in Chinese).
邬尚贇, 李晓丽, 常平, 等. 排灌机械工程学报, 2019, 37(12), 1093.
4 Geng K Q, Chai J R, Qin Y, et al. Bulletin of Engineering Geology and the Environment, 2022, 81(4), 1.
5 Dong J L, Zhang T T, Zhu Y C, et al. Composites, Part B Engineering, 2021(15), 225.
6 Zhu J H, Li X L. Environmental Science and Pollution Research International, 2022, 29(43), 65197.
7 Dong J L, Li C M, Liu H, et al. Construction and Building Materials, 2019, 201, 641.
8 Zhang Y Y, Xu L, Seetharaman S, et al. Materials and Structures, 2015, 48 (9), 2779.
9 Dong C X, Wang N Q, Li J S, et al. Coal Geology & Exploration, 2023, 51(3), 10(in Chinese).
董晨曦, 王念秦, 李江山, 等. 煤田地质与勘探, 2023, 51(3), 10.
10 Guan X, Chen Q X, Zhu M Y, et al. Materials Reports, 2023, 37(4), 91(in Chinese).
关虓, 陈霁溪, 朱梦宇, 等. 材料导报, 2023, 37(4), 91.
11 Huang X M, Rao J L, Du K. Mining Safety & Environmental Protection, 2023, 50(6), 92(in Chinese).
黄学满, 饶吉来, 杜凯. 矿业安全与环保, 2023, 50(6), 92.
12 Zhang W Q, Chai J, Feng X J, et al. Journal of China University of Mi-ning & Technology, 2021, 50(3), 539(in Chinese).
张卫清, 柴军, 冯秀娟, 等. 中国矿业大学学报, 2021, 50(3), 539.
13 Ma H, Cao H Y, Zhu H G, et al. Construction and Building Materials, 2019, 225, 204.
14 Zhao Y, Yang C, Li K, et al. Construction and Building Materials, 2022, 318, 125999.
15 Li Y, Yao Y, Liu X, et al. Fuel, 2013, 109, 527.
16 Cao Z, Cao Y D, Dong H J, et al. International Journal of Mineral Processing, 2016, 146, 23.
17 Ministry of Transport of the People's Republic of China. Pavement base construction technical instructions. China Communications Press, China, 2015(in Chinese).
中华人民共和国交通运输部. 公路路面基层施工技术细则, 人民交通出版社, 2015.
18 Yang J, Li X L, Wang H, et al. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(12), 1230(in Chinese).
杨健, 李晓丽, 王辉, 等. 排灌机械工程学报, 2021, 39(12), 1230.
19 Cheng H L, Yang F H, Ma B G, et al. Journal of Building Materials, 2016, 19(2), 7(in Chinese).
程海丽, 杨飞华, 马保国, 等. 建筑材料学报, 2016, 19(2), 7.
20 Dong J L, Wang L J, Zhang T T. Construction and Building Materials, 2014, 66, 154.
21 Chu Y P, Zhang D M, Wang M, et al. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9), 12(in Chinese).
楚亚培, 张东明, 王满, 等. 岩石力学与工程学报, 2022, 41(9), 12.
22 Yan Y L. Fundamentals and applications of near infrared spectroscopy, China Light Industry Press, China, 2005(in Chinese).
严衍禄. 近红外光谱分析基础与应用, 中国轻工业出版社, 2005.
23 Vizcayno C, Gutiérrez R M, Castello R, et al. Applied Clay Science, 2010, 49(4), 405.
24 Guo Y, Yan K, Cui L, et al. Powder Technology, 2016, 302, 33.
25 Si P, Qiao X C, Yu J G. Journal of East China University of Science and Technology, 2011, 37(5), 571(in Chinese).
司鹏, 乔秀臣, 于建国. 华东理工大学学报(自然科学版), 2011, 37(5), 571.
26 Hao R W, Li X L, Xu P J, et al. Applied Clay Science. 2022, 223, 106508.
27 Li L, Zhang Y, Zhang Y, et al. Journal of Thermal Analysis and Calorimetry, 2016, 126(3), 1.
[1] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[2] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[3] 侯圣举, 李树国, 何超, 陈扬, 但建明, 周阳, 李相国, 吕阳. 再生微粉-电石渣制备硅酸盐水泥熟料及其水化性能研究[J]. 材料导报, 2024, 38(22): 23120044-6.
[4] 吴浪, 鲍蓉, 戴健, 雷斌. 石灰石-煅烧黏土-水泥(LC3)体系的水化动力学模型[J]. 材料导报, 2024, 38(15): 23020253-6.
[5] 高红梅, 兰永伟, 郭楠. 温度作用后花岗岩微观孔隙结构和渗透率的研究[J]. 材料导报, 2023, 37(13): 21070003-6.
[6] 刘猛, 王庆, 朱晨, 顿鹏, 刘勇. 水洗和粉磨预处理前后煅烧磷石膏的性能变化及应用[J]. 材料导报, 2022, 36(Z1): 22020111-5.
[7] 王志臣, 郭乃胜, 金鑫, 于安康. 煤矸石粉与沥青的交互作用评价及其微观机理研究[J]. 材料导报, 2022, 36(22): 21040248-7.
[8] 李克亮, 宋子明. 基于正交试验的拜耳法赤泥活化机理及性能分析[J]. 材料导报, 2022, 36(16): 21040130-7.
[9] 魏冠奇, 王琰帅, 洪舒贤, 董必钦, 邢锋. 工程开挖土的资源化再利用研究进展[J]. 材料导报, 2022, 36(13): 20110138-9.
[10] 严金生, 周洲, 张庆年, 施韬, 周威杰, 胡卓君. 不同温度煅烧凹凸棒土的水化活性[J]. 材料导报, 2021, 35(z2): 248-253.
[11] 吴金荣, 崔善成, 李飞, 洪荣宝. 煤矸石粉/聚酯纤维沥青混合料低温抗裂性研究[J]. 材料导报, 2021, 35(6): 6078-6085.
[12] 毛韦达, 赵林. 溶胶凝胶法合成La0.5Sr0.5Co0.8Mn0.2O3-δ钙钛矿及其催化性质[J]. 材料导报, 2021, 35(24): 24001-24005.
[13] 刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
[14] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[15] 汪心坤, 赵芳, 王建江. 煅烧温度对Zn0.96Co0.04O纳米纤维吸波性能的影响[J]. 材料导报, 2020, 34(14): 14034-14038.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed