Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24120078-6    https://doi.org/10.11896/cldb.24120078
  无机非金属及其复合材料 |
基于金属硅粉发气的多孔地聚合物制备及性能研究
李方贤1,*, 王子敬1, 奚爽2, 顾雅洁2, 韦江雄1, 余其俊1
1 华南理工大学材料科学与工程学院,广州 510640
2 浙江浙能科技环保集团股份有限公司,杭州 310013
Preparation and Properties of Porous Geopolymers via In-situ Gas Generation from Metallic Silicon Powder
LI Fangxian1,*, WANG Zijing1, XI Shuang2, GU Yajie2, WEI Jiangxiong1, YU Qijun1
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2 Zhejiang Zheneng Technology & Environment Group Co., Ltd., Hangzhou 310013, China
下载:  全 文 ( PDF ) ( 16632KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对传统蒸压加气混凝土生产工艺存在的高能耗、高碳排放、工艺复杂等问题,提出一种常温下利用金属硅粉原位发气制备多孔地聚合物的绿色环保方法,该方法在常温下发气,无需蒸压养护,显著降低了生产成本和环境负荷。通过系统研究水玻璃模数、水固比和金属硅粉掺量对发气过程、孔结构和力学性能的影响,优化确定了较佳工艺参数。结果表明,金属硅粉在地聚合物体系中发气过程具有15~30 min的诱导期,便于浆料的现场浇筑;最终膨胀率达120%~140%,平均孔径为270~342 μm;经蒸汽养护96 h和自然养护28 d后,抗压强度分别达到3.01、2.68 MPa。与铝粉发气法相比,该方法制备的多孔地聚合物具有更均匀的孔径分布和更规则的孔结构。研究成果为开发新型绿色环保、可现场浇注的保温隔热建筑材料提供了新的技术途径,具有重要的工程应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李方贤
王子敬
奚爽
顾雅洁
韦江雄
余其俊
关键词:  地聚合物  金属硅粉  发气  诱导期    
Abstract: This study presents a novel, environmentally friendly method for producing porous geopolymers using in-situ gas generation from metallic silicon powder at ambient temperature. This approach offers a significant advantage over conventional autoclaved aerated concrete (AAC) production by eliminating the energy-intensive autoclaving process and simplifying the manufacturing procedure, thus reducing both production costs and environmental impact. The influence of water glass modulus, water-to-solid ratio, and metallic silicon powder content on gas generation, pore structure, and mechanical properties was systematically investigated to optimize the process parameters. The results demonstrate that the gas generation process exhibits a 15~30 minute induction period, facilitating convenient on-site casting of the geopolymer slurry. The resulting mate-rial achieved a 120%—140% expansion rate with an average pore size of 270—342 μm. Its compressive strength reaches 3.01 MPa and 2.68 MPa after 96 h of steam curing and 28 d of natural curing, respectively. Compared to the aluminum powder-based gasification method, this technique yields porous geopolymers with a more uniform pore size distribution and a more regular pore structure. This research offers a promi-sing new avenue for developing sustainable, eco-friendly, and on-site castable thermal insulation building materials with considerable engineering applications.
Key words:  geopolymer    metallic silicon powder    gas generation    induction period
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52372025)
通讯作者:  *李方贤,博士,华南理工大学材料科学与工程学院副教授、硕士研究生导师,目前主要研究领域为建筑功能材料。msfxli@scut.edu.cn   
引用本文:    
李方贤, 王子敬, 奚爽, 顾雅洁, 韦江雄, 余其俊. 基于金属硅粉发气的多孔地聚合物制备及性能研究[J]. 材料导报, 2025, 39(23): 24120078-6.
LI Fangxian, WANG Zijing, XI Shuang, GU Yajie, WEI Jiangxiong, YU Qijun. Preparation and Properties of Porous Geopolymers via In-situ Gas Generation from Metallic Silicon Powder. Materials Reports, 2025, 39(23): 24120078-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120078  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24120078
1 Zhao D L, Hu C Y, Bai D S, et al. Building Energy Efficiency, 2015, 43(3), 116 (in Chinese).
赵东来, 胡春雨, 柏德胜, 等. 建筑节能, 2015, 43(3), 116.
2 Aditya L, Mahlia T M I, Rismanchi B, et al. Renewable and Sustainable Energy Reviews, 2017, 73, 1352.
3 Narayanan N, Ramamurthy K. Cement and Concrete Composites, 2000, 22(5), 321.
4 Jerman M, Keppert M, Výborný J, et al. Construction and Building Materials, 2013, 41, 352.
5 Chen D M, Lu B, Li Z H. Guangdong Chemical Industry, 2018, 45(11), 161 (in Chinese).
陈德敏, 陆彪, 李智虎. 广东化工, 2018, 45(11), 161.
6 Xu J L, Jiang M X, Zhang R H, et al. Refractories, 2011, 45(6), 407 (in Chinese).
徐吉龙, 蒋明学, 章荣会, 等. 耐火材料, 2011, 45(6), 407.
7 Chai D X, Cao D G, Chen J H, et al. Concrete, 2009, 9(12), 29 (in Chinese).
柴大霞, 曹德光, 陈聚华, 等. 混凝土, 2009, 9(12), 29.
8 Sun M K. Research on application technology of wall thermal insulation material based on hydrogen peroxide foaming technology. Master’s Thesis, Xi’an Technological University, China, 2017 (in Chinese).
孙明昆. 基于双氧水发泡技术下的墙体保温材料应用技术研究. 硕士学位论文, 西安工业大学, 2017.
9 Dhasindrakrishna K, Pasupathy K, Ramakrishnan S, et al. Cement and Concrete Composites, 2021, 116, 103886.
10 Zhao J, Tong L, Li B, et al. Journal of Cleaner Production, 2021, 307, 127085.
11 Peng H, Chen Z K, Cui C, et al. Journal of Building Materials, 2017, 20(3), 379 (in Chinese).
彭晖, 陈治坤, 崔潮, 等. 建筑材料学报, 2017, 20(3), 379.
12 Tang N, Wang Y J, Zhao M Y, et al. Materials Reports, 2024, 38(8), 148 (in Chinese).
唐宁, 王延军, 赵明宇, 等. 材料导报, 2024, 38(8), 148.
13 Davidovits J. Geopolymer chemistry and applications, Saint-Quentin:Geopolymer Institute, France, 2008, pp. 56.
14 Bourret J, Prud’homme E, Rossignol S, et al. Journal of Materials Science, 2012, 47(1), 391.
15 Medri V, Papa E, Dedecek J, et al. Ceramics International, 2013, 39(7), 7657.
16 Luna-Galiano Y, Leiva C, Arenas C, et al. Journal of Non-Crystalline Solids, 2018, 500, 196.
17 Papa E, Medri V, Kpogbemabou D, et al. Energy and Buildings, 2016, 131, 223.
[1] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[2] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[3] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[4] 徐俊, 康爱红, 吴正光, 龚泳帆, 寇长江, 吴帮伟, 张垚, 肖鹏. 高性能再生微粉基地聚合物注浆料的活化制备及性能研究[J]. 材料导报, 2024, 38(22): 24060235-6.
[5] 马彬, 衣兆林, 牛海华, 黄启钦. 高温下SiO2气凝胶改性地聚合物的物理力学性能研究[J]. 材料导报, 2023, 37(10): 21110251-6.
[6] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[7] 孙科科, 彭小芹, 冉鹏, 王淑萍, 曾路, 李静静, 王双. 地聚合物混凝土抗冻性影响因素[J]. 材料导报, 2021, 35(24): 24095-24100.
[8] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[9] 刘鑫, 彭泽川, 潘晨豪, 胡鑫, 万朝均, 杨宏宇. 纳米二氧化硅改性粉煤灰地聚合物力学性能及微观分析[J]. 材料导报, 2020, 34(22): 22078-22082.
[10] 田中男, 张争奇, 李乃强, 徐玉峰, 唐亨山, 桂增俭. 工业废渣地聚合物注浆材料组分及性能增强的研究进展[J]. 材料导报, 2020, 34(19): 19034-19042.
[11] 马骁, 谢雪鹏, 叶雄伟, 何巨鹏, 朱杰. 基于氮气吸附法的钙基地聚合物孔隙结构分形特征[J]. 材料导报, 2019, 33(12): 1989-1994.
[12] 罗忠涛,刘垒,康少杰,王亚洲,杨久俊. 地聚合物固化/稳定有毒重金属及作用机理研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1834-1841.
[13] 李 三,彭小芹,苟 菁,周 淦,黄 婷,陈 洋,王淑萍. 矿物掺合料对地聚合物抗冻性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1711-1715.
[14] 张长森, 朱宝贵, 李杨, 冯桢哲, 王毓, 胡志超. 镍渣/偏高岭土基地聚合物的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(23): 193-197.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed