Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24110196-8    https://doi.org/10.11896/cldb.24110196
  无机非金属及其复合材料 |
CO2液相吸收-电催化转化一体化研究进展
王少娜1, 杨阳2, 徐文青2,*, 白丁荣1, 苏发兵1,2, 朱廷钰2
1 沈阳化工大学化学工程学院,沈阳 110142
2 中国科学院过程工程研究所,北京 100190
Research Progress of Integrated CO2 Liquid-phase Absorption Electrocatalytic Conversion
WANG Shaona1, YANG Yang2, XU Wenqing2,*, BAI Dingrong1, SU Fabing1,2, ZHU Tingyu2
1 School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, Liaoning, China
2 Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 110190, China
下载:  全 文 ( PDF ) ( 19287KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳捕集与利用(Carbon capture and utilization,CCU)技术是实现碳中和的重要途径。传统的CCU过程中,CO2需经历吸收、解吸、压缩和运输等诸多步骤得到高纯气体,后续进行电化学CO2还原反应(eCO2RR),导致技术能耗高、成本投入大。对CO2捕集介质直接进行电化学还原反应(cCO2RR)是一种前沿性技术,可以避免再生和压缩运输等高能耗步骤,从而实现减耗降本。本文系统综述了cCO2RR的研究进展,分别梳理了有机胺溶液和碱性溶液体系中电极材料、吸收液组分、添加剂等因素对cCO2RR的影响及机制,并总结了cCO2RR的研究现状。电极材料主要包括Au、Ag、Cu等,通过改变形貌增大电极材料表面积是提升电催化性能的主要手段;吸收液的研究主要聚焦于吸收液种类和添加剂,碱性溶液主要为NaHCO3和KHCO3等,而有机胺溶液主要为伯胺/仲胺/叔胺等单一有机胺;通过添加金属阳离子和阳离子表面活性剂,分别能够提高溶液的导电性和抑制析氢副反应,从而提升产物的选择性。未来的研究应重点关注催化材料的改性方法、调控产物的选择性,此外,针对有机胺相变吸收体系开展研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王少娜
杨阳
徐文青
白丁荣
苏发兵
朱廷钰
关键词:  CO2捕集利用  电催化还原  有机胺  CO2减排    
Abstract: Carbon capture and utilization (CCU) technology is an important way to achieve carbon neutrality. In the traditional CCU process, CO2 needs to go through many steps such as absorption, desorption, compression, and transportation to obtain high-purity gas, followed by electrochemical CO2 reduction reaction (eCO2RR), resulting in high technical energy consumption and cost investment. Direct electrochemical conversion via the captured-CO2 reduction reaction (cCO2RR) is a cutting-edge technology that can avoid high energy consumption steps such as regeneration and compression transportation, thereby achieving cost reduction. This article systematically reviews the research progress of cCO2RR. We have sorted out the effects and mechanisms of electrode materials, absorbent components, additives, etc. on the cCO2RR in organic amine solution and alkaline solution systems, and summarized the research status of cCO2RR. The electrode material mainly includes components such as Au, Ag, Cu, etc. Increasing the surface area of the electrode material by changing its morphology is the main means to improve the electrocatalytic performance. The research on absorption solutions mainly focuses on the types of absorption solutions and additives, among which alkaline solutions are mainly NaHCO3 and KHCO3, while organic amine solutions are mainly single organic amines such as primary/se-condary/tertiary amines. By adding metal cations and cationic surfactants, the conductivity of the solution can be improved and the hydrogen evolution side reaction can be suppressed, respectively, which both can enhance the selectivity of the product. Future research should focus on the modification methods of catalytic materials, regulating the selectivity of products, and conducting research on organic amine phase transition absorption systems.
Key words:  CO2 capture and utilization    electrocatalytic reduction    organic amine    CO2 emission reduction
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  X505  
基金资助: 中国科学院战略性先导科技专项(XDA29040900);云南省重点研发计划(202303AC100008)
通讯作者:  *徐文青,博士,中国科学院过程工程研究所研究员、博士研究生导师。主要从事钢铁行业污染控制、碳减排、低碳冶金等方面的研究。wqxu@ipe.ac.cn   
作者简介:  王少娜,沈阳化工大学与中国科学院过程工程研究所联培硕士研究生。目前主要研究领域为CO2吸收电催化转化一体化。
引用本文:    
王少娜, 杨阳, 徐文青, 白丁荣, 苏发兵, 朱廷钰. CO2液相吸收-电催化转化一体化研究进展[J]. 材料导报, 2025, 39(22): 24110196-8.
WANG Shaona, YANG Yang, XU Wenqing, BAI Dingrong, SU Fabing, ZHU Tingyu. Research Progress of Integrated CO2 Liquid-phase Absorption Electrocatalytic Conversion. Materials Reports, 2025, 39(22): 24110196-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110196  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24110196
1 Gutiérrez-Sánchez O, Bohlen B, Daems N, et al. ChemElectroChem, 2022, 9(5), e202101540.
2 Gao W, Liang S, Wang R, et al. Chemical Society Reviews, 2020, 49(23), 8584.
3 Marocco S F, MacPherson F, Leclaire J. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 71.
4 Hernández S, Amin F M, Sastre F, et al. Green Chemistry, 2017, 19(10), 2326.
5 Karapinar D, Creissen C E, Rivera de la Cruz J G, et al. ACS Energy Letters, 2021, 6(2), 694.
6 García de A F P, Dinh C T, Ozden A, et al. Science, 2020, 367(6478), 661.
7 Abdinejad M, Dao C, Deng B, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(25), 9549.
8 Li M, Tian X, Garg S, et al. ACS Applied Materials & Interfaces, 2020, 12(20), 22760.
9 Alerte T, Edwards J P, Gabardo C M, et al. ACS Energy Letters, 2021, 6(12), 4405.
10 Greenblatt J B, Miller D J, Ager J W, et al. Joule, 2018, 2(3), 381.
11 Sullivan I, Goryachev A, Digdaya I A, et al. Nature Catalysis, 2021, 4(11), 952.
12 Ramdin M, de Loos T W, Vlugt T J H. Industrial & Engineering Chemistry Research, 2012, 51(24), 8149.
13 Rochelle G T. Science, 2009, 325(5948), 1652.
14 Li K, Leigh W, Feron P, et al. Applied Energy, 2016, 165, 648.
15 Fridahl M, Hansson A, Haikola S. Climate, 2020, 8(6), 75.
16 Lee G, Li Y C, Kim J Y, et al. Nature Energy, 2021, 6(1), 46.
17 Chen L, Li F, Zhang Y, et al. ChemSusChem, 2017, 10(20), 4109.
18 Hossain M N, Ahmad S, da Silva I S, et al. Chemistry-A European Journal, 2021, 27(4), 1346.
19 Kim J H, Jang H, Bak G, et al. Energy & Environmental Science, 2022, 15(10), 4301.
20 Abdinejad M, Mirza Z, Zhang X A, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(4), 1715.
21 Ahmad N, Chen Y, Wang X, et al. Renewable Energy, 2022, 189, 444.
22 Pérez-Gallent E, Vankani C, Sánchez-Martínez C, et al. Industrial & Engineering Chemistry Research, 2021, 60(11), 4269.
23 Li Q, Qu T, Tan S, et al. Chemical Engineering Journal, 2024, 498, 155056.
24 Dai R, Zhang L, Viet Bao Tran K, et al. Separation and Purification Technology, 2025, 355, 129575.
25 Diaz L A, Gao N, Adhikari B, et al. Green Chemistry, 2018, 20(3), 620.
26 Li T, Lees E W, Goldman M, et al. Joule, 2019, 3(6), 1487.
27 Zhang Z, Lees E W, Habibzadeh F, et al. Energy & Environmental Science, 2022, 15(2), 705.
28 Li T, Lees E W, Zhang Z, et al. ACS Energy Letters, 2020, 5(8), 2624.
29 Fink A G, Lees E W, Zhang Z, et al. ChemElectroChem, 2021, 8(11), 2094.
30 Gutiérrez-Sánchez O, Daems N, Bulut M, et al. ACS Applied Materials & Interfaces, 2021, 13(47), 56205.
31 Diederichsen K M, Sharifian R, Kang J S, et al. Nature Reviews Methods Primers, 2022, 2(1), 68.
32 Keith D W, Holmes G, St Angelo D, et al. Joule, 2018, 2(8), 1573.
33 Bottoms R. U. S. Patent 1, 783, 901, 1930.
34 Sun C, Dutta P K. Industrial & Engineering Chemistry Research, 2016, 55(22), 6276.
35 Nonhebel G. Transactions of the Faraday Society, 1936, 32, 1291.
36 Sanz-Pérez E S, Murdock C R, Didas S A, et al. Chemical Reviews, 2016, 116(19), 11840.
37 Khurram A, Yan L, Yin Y, et al. The Journal of Physical Chemistry C, 2019, 123(30), 18222.
38 Monteiro M C O, Dattila F, Hagedoorn B, et al. Nature Catalysis, 2021, 4(8), 654.
39 Shen K, Cheng D, Reyes-Lopez E, et al. Joule, 2023, 7(6), 1260.
40 Safipour J, Weber A Z, Bell A T. ACS Energy Letters, 2023, 8(12), 5012.
41 Bruggeman D F, Rothenberg G, Garcia A C. Nature Communications, 2024, 15(1), 9207.
42 Hori Y, Suzuki S. Journal of The Electrochemical Society, 1983, 130(12), 2387.
43 Fink A G, Lees E W, Gingras J, et al. Journal of Inorganic Biochemistry, 2022, 231, 111782.
44 Kang J S, Kim S, Hatton T A. Current Opinion in Green and Sustainable Chemistry, 2021, 31, 100504.
45 Kortlever R, Tan K H, Kwon Y, et al. Journal of Solid State Electrochemistry, 2013, 17(7), 1843.
46 Sreekanth N, Phani K L. Chemical Communications, 2014, 50(76), 11143.
47 Dunwell M, Lu Q, Heyes J M, et al. Journal of the American Chemical Society, 2017, 139(10), 3774.
48 Ooka H, Figueiredo M C, Koper M T M. Langmuir, 2017, 33(37), 9307.
49 Zhu S, Jiang B, Cai W B, et al. Journal of the American Chemical Society, 2017, 139(44), 15664.
[1] 聂松, 周健, 徐名凤, 李辉. 低碳胶凝材料的研究进展[J]. 材料导报, 2024, 38(2): 22050304-9.
[2] 陈皓然, 夏英东, 陈永华, 黄维. 低维钙钛矿:兼具高效率和稳定性的新型太阳能电池光吸收层候选材料[J]. 材料导报, 2018, 32(1): 1-11.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed