Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24110133-7    https://doi.org/10.11896/cldb.24110133
  无机非金属及其复合材料 |
基于通用有效介质理论的双尺度水泥浆体氯离子扩散系数模型
田壮, 肖官衍, 夏晋, 金伟良*
浙江大学建筑工程学院,杭州 310058
A Two-scale Chloride Diffusion Coefficient Model in Cement Pastes Based on General Effective Medium Theory
TIAN Zhuang, XIAO Guanyan, XIA Jin, JIN Weiliang*
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
下载:  全 文 ( PDF ) ( 5906KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 孔隙是离子在水泥基材料中传输的通道,随着水化的进行,孔隙结构的相关参数会发生较大变化,需要对其在不同水灰比和龄期下的参数取值进行定量计算。通过NEL(Nernst-Einstein lab)实验和核磁共振(Nuclear magnetic resonance,NMR)实验研究了不同种类的孔隙对氯离子扩散系数的影响规律,采用通用有效介质理论(General effective medium theory,GEM)拟合了水泥浆体尺度和水化产物尺度下氯离子扩散系数模型中的关键参数。结果表明,在不同条件下水泥净浆的孔隙结构会发生显著改变,在水泥浆体层面,氯离子倾向于在毛细孔中扩散,扩散系数与毛细孔隙率呈强相关性,水化产物相的扩散系数随着水灰比的增加而减少,随着龄期的延长而增大;在水化产物层面,凝胶孔对氯离子扩散的影响不可忽略,扩散系数和凝胶孔隙率呈强相关性,临界孔隙率为0.122~0.172,凝胶孔的渗流指数为1.880~2.241。该模型可以基于不同种类的孔隙率计算氯离子扩散系数,对参数取值进行了精确计算和表征,对工程结构的耐久性设计具有一定指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田壮
肖官衍
夏晋
金伟良
关键词:  氯离子扩散系数  水泥浆体  毛细孔  凝胶孔  通用有效介质理论    
Abstract: Pores are the basic channels for ion transport in cementitious materials. As hydration proceeds, the relevant parameters of the pore structure will change, which needs to be quantitatively calculated in terms of the values of the parameters at different water-cement ratios and curing ages. The effects of different pores on the diffusion coefficient of chloride ions were studied by NEL (Nernst-Einstein lab) test and NMR(Nuclear magnetic resonance) experiment. The general effective medium (GEM) theory was used to fit the key parameter of chloride diffusion coefficient model at the scale of cement paste and hydration products. The results show that the pore structure of the cement paste changes significantly under different conditions. At the scale of the cement paste, ions are more inclined to diffuse into the capillary pores. The diffusion coefficient is strongly correlated with the capillary porosity, and the diffusion coefficient of the hydration product phase decreases with the increase of the water-cement ratio, and increases with the extension of the age. At the scale of the hydration product, the effect of the gel pores on the diffusion of ions is non-negligible, the diffusion coefficient and the gel porosity are strongly correlated with each other. The critical porosity is approximately 0.122 to 0.172, and the percolation index of gel pores is approximately 1.880 to 2.241. The model can calculate the chloride diffusion coefficients based on different types of porosities, and accurately assign the parameter values, which is of significance for the durability design of engineering structures.
Key words:  chloride diffusion coefficient    cement paste    capillary pore    gel pore    general effective medium theory
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TU375  
基金资助: 国家自然科学基金(52178176;52478216)
通讯作者:  *金伟良,博士,浙江大学建筑工程学院教授、博士研究生导师。从事工程结构全寿命分析(含可靠性和可持续性)、混凝土结构基本性能(含耐久性、长期性能)、砌体结构理论和应用等研究工作。jinwl@zju.edu.cn   
作者简介:  田壮,浙江大学建筑工程学院博士研究生,在金伟良教授的指导下进行研究。目前主要研究领域为水泥基材料中的离子传输。
引用本文:    
田壮, 肖官衍, 夏晋, 金伟良. 基于通用有效介质理论的双尺度水泥浆体氯离子扩散系数模型[J]. 材料导报, 2025, 39(22): 24110133-7.
TIAN Zhuang, XIAO Guanyan, XIA Jin, JIN Weiliang. A Two-scale Chloride Diffusion Coefficient Model in Cement Pastes Based on General Effective Medium Theory. Materials Reports, 2025, 39(22): 24110133-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110133  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24110133
1 Jin W L, Zhao Y X. Durability of concrete structure, Science Press, China, 2014, pp.65(in Chinese).
金伟良, 赵羽习. 混凝土结构耐久性(第二版), 科学出版社, 2014, pp.65.
2 Collepardi M, Turriziani R, Marcialis A. Journal of the American Ceramic Society, 1972, 55(10), 534.
3 Yang L F, Zhu E. Material Reports, 2025, 39(21), 24100140(in Chinese).
杨绿峰, 朱恩. 材料导报, 2025, 39(21), 24100140.
4 Tong L Y, Liu Q F. Journal of Building Materials, 2023, 26(10), 1062(in Chinese).
童良玉, 刘清风. 建筑材料学报, 2023, 26(10), 1062.
5 Zhang J H, Wang W, Guan Z G. Material Reports, 2016, 30(S2), 401(in Chinese).
张菊辉, 王伟, 管仲国. 材料导报, 2016, 30(S2), 401.
6 Tiedje E W, Guo P. Journal of Materials Science, 2014, 49(16), 5586.
7 Chen J J, Hein K S, Lyu G, et al. Construction and Building Materials, 2025, 458, 139529.
8 Caré S. Cement and Concrete Research, 2003, 33(7), 1021.
9 Liu Q F. Journal of the Chinese Ceramic Society, 2018, 46(8), 1074(in Chinese).
刘清风. 硅酸盐学报, 2018, 46(8), 1074.
10 Yang C C, Su J K. Cement and Concrete Research, 2002, 32(10), 1559.
11 Basheer L, Basheer P, Long A E. Construction and Building Materials, 2005, 19(9), 682.
12 Zhou Y, Liu Q F. Material Reports, 2023, 37(24), 22070243(in Chinese).
周宇, 刘清风. 材料导报, 2023, 37(24), 22070243.
13 Tian Z, Xiao G Y, Jin W L, et al. Journal of Zhejiang University (Engineering Science). 2023, 57(7), 1393(in Chinese).
田壮, 肖官衍, 金伟良, 等. 浙江大学学报(工学版), 2023, 57(7), 1393.
14 Bejaoui S, Bary B. Cement and Concrete Research, 2007, 37(3), 469.
15 Zheng J, Zhou X. Journal of Materials in Civil Engineering, 2008, 20(5), 384.
16 Garboczi E J, Bentz D P. Journal of Materials Science, 1992, 27(8), 2083.
17 Bernard F, Kamali-Bernard F. Computational Materials Science. 2012, 61, 106.
18 Mclachlan D S, Blaszkiewicz M, Newnham R E. Journal of the American Ceramic Society, 1990, 73(8), 2187.
19 Oh B H, Jang S Y. Cement and Concrete Research, 2004, 34(3), 463.
20 State Administration for Market Regulation. Concrete admixtures:GB 8076-2008. Standards Press of China, China, 2008(in Chinese).
国家市场监督管理总局. 混凝土外加剂:GB 8076-2008, 中国标准出版社, 2008(in Chinese).
21 State Administration for Market Regulation. Standard for test methods of concrete physical and mechanical properties:GB/T 50081-2019, Standards Press of China, China, 2019(in Chinese).
国家市场监督管理总局. 混凝土物理力学性能试验方法标准:GB/T 50081-2019, 中国标准出版社, 2019(in Chinese).
22 Leng F G, Feng N Q, Lu X Y. Cement and Concrete Research, 2000, 30(6), 989.
23 China Civil Engineering Society. Guide to durability design and construction of concrete structures:CCES01-2004, China Architecture & Building Press, China, 2004(in Chinese).
中国土木工程学会. 混凝土结构耐久性设计与施工指南:CCES01-2004, 中国建筑工程出版社, 2004.
24 Zhuang R, Li Y, Huang J, et al. Journal of Environmental Chemical Engineering, 2024, 12(6), 114325.
25 Li C J, Sun Z P, Li Q, et al. Material Reports, 2016, 30(13), 133(in Chinese).
李春景, 孙振平, 李奇, 等. 材料导报, 2016, 30(13), 133.
26 Zhao H T, Qin X, Liu J P, et al. Construction and Building Materials, 2018, 189, 934.
27 Yang C C, Cho S W, Wang L C. Materials Chemistry and Physics, 2006, 100(2-3), 203.
28 Mehta P K, Monteiro P J M. Concrete:microstructure, properties, and materials. McGraw-Hill Education, America, 2014.
29 Li C, Song X, Gu X. Construction and Building Materials, 2022, 333, 127383.
30 Ma H, Hou D, Liu J, et al. Construction and Building Materials, 2014, 71, 392.
31 Lin J, Chen H. Powder Technology, 2018, 335, 388.
32 Garboczi E J, Bentz D P. Computational and Mathematical Models of Microstructural Evolution, 1998, 529, 89.
33 Liu Z, Zhang Y, Liu L, et al. Construction and Building Materials, 2013, 48, 647.
34 Christensen B J, Coverdale T, Olson R A, et al. Journal of the American Ceramic Society, 1994, 77(11), 2789.
35 Tennis P D, Jennings H M. Cement and Concrete Research, 2000, 30(6), 855.
36 Lyu K, She W, Chang H, et al. Construction and Building Materials, 2020, 248, 118559.
[1] 杨绿峰, 朱恩. 粉煤灰混凝土氯离子扩散系数的广源大样本模型[J]. 材料导报, 2025, 39(21): 24100140-7.
[2] 杨玉龙, 单联飞, 庄智杰, 鲍玖文, 崔祎菲. 海洋潮汐区混凝土氯离子扩散系数相似性分析[J]. 材料导报, 2025, 39(18): 24080008-6.
[3] 陈翠翠, 张倩倩, 杨勇, 舒鑫, 冉千平. 低水胶比水泥浆体静动态流变行为的经时变化[J]. 材料导报, 2024, 38(15): 23040237-5.
[4] 莫耀鸿, 刘剑辉, 刘乐平, 陈正, 蒋增贵, 史才军. 水泥-蔗渣灰-矿粉海砂砂浆的抗压强度与抗氯盐渗透性能研究[J]. 材料导报, 2024, 38(14): 23030005-10.
[5] 张弛, 李克非, 王俊杰. 水泥净浆非碳化区与脱钙碳化区的微观力学表征[J]. 材料导报, 2023, 37(2): 20110098-8.
[6] 朱红光, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报, 2022, 36(16): 21030218-5.
[7] 张倩倩, 刘建忠, 张丽辉, 刘加平. 矿物掺合料对低水胶比浆体流变性能的影响机制研究[J]. 材料导报, 2020, 34(22): 22054-22057.
[8] 李保亮, 尤南乔, 曹瑞林, 霍彬彬, 陈春, 张亚梅. 锂渣粉的组成及在水泥浆体中的物理与化学反应特性[J]. 材料导报, 2020, 34(10): 10046-10051.
[9] 陈超, 孙振平. 硅灰对掺有无碱速凝剂水泥浆体性能的影响[J]. 材料导报, 2019, 33(14): 2348-2353.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed