Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24110073-6    https://doi.org/10.11896/cldb.24110073
  无机非金属及其复合材料 |
Fe/SiO2质量比对FeO-SiO2-Al2O3体系熔体黏度的影响机制
付芳忠1,2, 叶昊辉1,2, 胡金1,2, 姚明灿1,2, 林嘉豪1,2, 谢博毅1,2, 范鹤林1,2,*, 王瑞祥1,2, 徐志峰1,2,3
1 江西理工大学冶金工程学院,江西 赣州 341000
2 江西理工大学绿色冶金与过程强化研究所,江西 赣州 341000
3 江西应用技术职业学院,江西 赣州 341000
Principle of How Fe/SiO2 Mass Ratio Influences Melt Viscosity of FeO-SiO2-Al2O3 System
FU Fangzhong1,2, YE Haohui1,2, HU Jin1,2, YAO Mingcan1,2, LIN Jiahao1,2, XIE Boyi1,2, FAN Helin1,2,*, WANG Ruixiang1,2, XU Zhifeng1,2,3
1 School of Metallurgical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
2 Institute of Green Metallurgy and Process Intensification, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
3 Jiangxi College of Applied Technology, Ganzhou 341000, Jiangxi, China
下载:  全 文 ( PDF ) ( 7014KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 强化熔炼法能极大提高铜冶炼过程的生产效率与生产强度,降低能源消耗,但存在渣锍分离困难、渣中含铜量高的问题。本工作采用分子动力学模拟的方法,获得了FeO-SiO2-Al2O3体系熔体的结构及黏度。研究发现,随着Fe/SiO2质量比从0.8增加到1.8,Si-O的键长保持1.61 不变,平均CNSi-O和CNAl-O维持在4左右,O-Si-O键角基本不变,O-Al-O键角从103.50°增至106.37°;体系的聚集程度降低,单个聚集体粒子所拥有的非桥氧数量(NBO/T)从1.68增至3.72,黏度从0.48 Pa·s降至0.12 Pa·s。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付芳忠
叶昊辉
胡金
姚明灿
林嘉豪
谢博毅
范鹤林
王瑞祥
徐志峰
关键词:  铜渣  熔体结构  造锍熔炼  渣锍分离  黏度  分子动力学模拟    
Abstract: The intensified smelting method can greatly improve the production efficiency and production intensity of the copper smelting process and reduce energy consumption, but also brings about problems of difficulty in separating matte from slag and high copper content of slag. In this work, the structure and viscosity of FeO-SiO2-Al2O3 system melt were obtained by molecular dynamics simulation. The investigation showed that, as the Fe/SiO2 mass ratio increases from 0.8 to 1.8, the bond length of Si-O remains unchanged at 1.61 , the average CNSi-O and CNAl-O remain at about 4, the bond angle of O-Si-O remains basically unchanged, the bond angle of O-Al-O increases from 103.50° to 106.37°;the agglomeration degree of the system decreases, manifesting as a rise of the amount of non-bridging oxygen per tetrahedral-coordinated atom (NBO/T) from 1.68 to 3.72, and the viscosity decreases from 0.48 Pa·s to 0.12 Pa·s.
Key words:  copper slag    melt structure    matte smelting    slag matte separation    viscosity    molecular dynamics simulation
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TF811  
基金资助: 国家自然科学基金(52364040);江西省自然科学基金(20232BAB214037)
通讯作者:  *范鹤林,博士,江西理工大学冶金工程学院副教授、硕士研究生导师。目前主要从事高温合金制备、有色金属低碳绿色智能冶金、冶金熔体及物化性质等方面的研究。fanhelin0216@163.com   
作者简介:  付芳忠,江西理工大学冶金工程学院硕士研究生,在范鹤林副教授的指导下开展熔体结构及输运性质方面的研究。
引用本文:    
付芳忠, 叶昊辉, 胡金, 姚明灿, 林嘉豪, 谢博毅, 范鹤林, 王瑞祥, 徐志峰. Fe/SiO2质量比对FeO-SiO2-Al2O3体系熔体黏度的影响机制[J]. 材料导报, 2025, 39(22): 24110073-6.
FU Fangzhong, YE Haohui, HU Jin, YAO Mingcan, LIN Jiahao, XIE Boyi, FAN Helin, WANG Ruixiang, XU Zhifeng. Principle of How Fe/SiO2 Mass Ratio Influences Melt Viscosity of FeO-SiO2-Al2O3 System. Materials Reports, 2025, 39(22): 24110073-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110073  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24110073
1 Liu C F, Liu D F, Shu B, et al. Nonferrous Metals Engineering, 2024, 14(5), 56 (in Chinese).
刘承飞, 刘大方, 舒波, 等. 有色金属工程, 2024, 14(5), 56.
2 Phiri T C, Singh P, Nikoloski A N. Minerals Engineering, 2021, 172, 107150.
3 Mao K X, Li L. Nonferrous Metals Engineering, 2020, 10(10), 65 (in Chinese).
毛凯旋, 李磊. 有色金属工程, 2020, 10(10), 65.
4 Shi G C, Liao Y L, Zhang Y, et al. Materials Reports, 2020, 34(13), 13044 (in Chinese).
史公初, 廖亚龙, 张宇, 等. 材料导报, 2020, 34(13), 13044.
5 Hou X, Xiao G Q, Ding D H, et al. Journal of Non-Crystalline Solids, 2021, 574, 121147.
6 Chen M, Raghunath S, Zhao B J. Metallurgical and Materials Transactions B, 2013, 44, 506.
7 Shiraishi Y, Ikeda K, Tamura A, et al. Transactions of the Japan Institute of Metals, 1978, 19(5), 264.
8 Zhang H W, Fu L, Qi J B, et al. Metallurgical and Materials Transactions B, 2019, 50, 1852.
9 Park H S, Park S S, Sohn I. Metallurgical and Materials Transactions B, 2011, 42, 692.
10 Su F L, Yang B W, Zhang D G, et al. Non-ferrous Metals (Extractive Metallurgy), 2021(6), 18 (in Chinese).
苏凤来, 杨必文, 张登高, 等. 有色金属(冶炼部分), 2021(6), 18.
11 Sheng L, Li J T, Zhang J K, et al. Chinese Journal of Engineering, 2017, 39(1), 48 (in Chinese).
盛力, 李江涛, 张建坤, 等. 工程科学学报, 2017, 39(1), 48.
12 Zhang J L, Yang X, Zhang J K, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(8), 1712 (in Chinese).
张家靓, 杨旭, 张建坤, 等. 中国有色金属学报, 2019, 29(8), 1712.
13 Fan H L, Yao M C, Fu F Z, et al. Metallurgical and Materials Transactions B, DOI:10. 1007/s11663-024-03255-3.
14 Zheng K, Yang F H, Wang X D, et al. Materials Sciences and Applications, 2014, 5(2), 73.
15 Fan G Z, He S P, Wu T, et al. Metallurgical and Materials Transactions B, 2015, 46(4), 2005.
16 Wu T, He S P, Liang Y J, et al. Journal of Non-Crystalline Solids, 2015, 411, 145.
17 Wu Y Q, Hou H Y, Chen H, et al. Transactions of the Nonferrous Metals Society of China, 2001, 11(6), 965.
18 Wu Y Q, You J L, Jiang G C. Journal of Inorganic Materials, 2003, 18(3), 619 (in Chinese).
吴永全, 尤静林, 蒋国昌. 无机材料学报, 2003, 18(3), 619.
19 Tuheen M, Sun W, Du J C. Journal of the American Ceramic Society, 2022, 105(12), 7272.
20 Deng L, Du J C. Journal of the American Ceramic Society, 2019, 102(5), 2482.
21 Xin J, Gan L, Wang N, et al. Metallurgical and Materials Transactions B, 2019, 50(6), 2828.
22 Jia B R. Research on structural and properties of aluminosilicate melts by molecular dynamics simulation. Master's Thesis, Chongqing University, China, 2020 (in Chinese).
贾博然. 铝硅酸盐熔体结构和性能的分子动力学模拟研究. 硕士学位论文, 重庆大学, 2020.
23 Shimizu N, Kushiro I. Geochimica et Cosmochimica Acta, 1984, 48(6), 1295.
24 Reid J E, Poe B T, David C, et al. Chemical Geology, 2001, 174(1), 77.
25 Peys A, White C E, Olds D, et al. Journal of the American Ceramic Society, 2018, 101(12), 5846.
26 Zhang Z, Xie B, Zhou W, et al. ISIJ International, 2016, 56(5), 828.
27 Seo W G, Tsukihashi F. Materials Transactions, 2005, 46(6), 1240.
28 Jia B, Li M, Yan X B, et al. Journal of Non-Crystalline Solids, 2019, 526, 119695.
29 Guo J, Zhou H H, Hou Y, et al. Ceramics International, 2024, 50(20), 39069.
30 Lv X J, Xu Z M, Li J, et al. Journal of Molecular Liquids, 2016, 221(3), 26.
31 Siakati C, Macchieraldo R, Kirchner B, et al. Journal of Non-Crystalline Solids, 2020, 528, 119771.
32 Chen Y, Pan W J, Jia B, et al. Journal of Non-Crystalline Solids, 2021, 552, 120435.
33 Fan H L, Wang R X, Xu Z F, et al. Journal of Non-Crystalline Solids, 2021, 571, 121049.
[1] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[2] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[3] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[4] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[5] 杨建军, 崔雅茹, 王国华, 李小明, 李锋, 陈雷, 杨树峰. PbO-FeOx-CaO-SiO2-ZnO高铅渣还原过程熔渣结构及性能的分子动力学模拟[J]. 材料导报, 2025, 39(19): 24090067-5.
[6] 于文喜, 颜建伟, 万颖芳, 程娟, 易夕剑, 雷琴, 蒋海云. 聚氯乙烯混合增塑剂分子动力学模拟[J]. 材料导报, 2025, 39(16): 24100039-7.
[7] 周涛, 张笑晴, 陈家荣, 杨晨艺, 雷彩红. 厚朴酚基形状记忆环氧树脂的制备及性能研究[J]. 材料导报, 2025, 39(11): 24020002-7.
[8] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[9] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[10] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[11] 章凯倩, 王志伟, 曾少甫, 胡长鹰. 再生聚乙烯中挥发性气味物质扩散的分子动力学模拟[J]. 材料导报, 2023, 37(22): 22080036-8.
[12] 董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
[13] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[14] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[15] 伍勇华, 李莹, 党梓轩, 何娟, 齐昭栋. 利用坍落扩展试验表征水泥基材料流变参数研究进展[J]. 材料导报, 2022, 36(16): 21010120-5.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed