Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24100132-5    https://doi.org/10.11896/cldb.24100132
  无机非金属及其复合材料 |
相变石蜡改性玻化微珠保温砂浆的导热性能
贾亮*, 张玮玮, 陈振瑞
兰州理工大学土木工程学院,兰州 730050
The Thermal Conductivity of Glazed Hollow Bead Insulation Mortar Modified by Phase Change Paraffin
JIA Liang*, ZHANG Weiwei, CHEN Zhenrui
School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 3981KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善玻化微珠保温砂浆的保温性能,加入相变材料(PCMs)微胶囊化的相变石蜡对保温砂浆进行改性,探究微胶囊相变石蜡对砂浆导热性能的改善效果。基于响应曲面法的中心复合法设计试验,以水胶比、玻化微珠掺量及微胶囊相变石蜡掺量为影响因子,以导热系数为响应面,建立砂浆导热性能的三维响应模型,寻求影响因子最优组合的保温砂浆配合比,使改性玻化微珠保温砂浆的导热系数最低。并根据Maxwell模型建立公式预测砂浆的导热系数。研究发现:微胶囊相变石蜡能显著改善玻化微珠保温砂浆的保温性能,当玻化微珠和微胶囊相变石蜡掺量分别为73.54%、5.54%,水胶比为3.542时保温砂浆的导热系数相较规范规值(0.070 W/(m·K))降低了35.71%;Maxwell模型预测砂浆导热系数的准确率在94.7%~99.9%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾亮
张玮玮
陈振瑞
关键词:  相变石蜡  玻化微珠保温砂浆  响应曲面法  Maxwell模型    
Abstract: In order to enhance the thermal insulation performance of glazed hollow bead insulation mortar, microencapsulated phase change paraffin was added as phase change materials (PCMs) in the thermal insulation mortar to modify the mortar. The effect of microencapsulated phase change paraffin on the thermal conductivity of mortar was studied. Based on the central complex design test of the response surface method, ta-king the water-binder ratio, the amount of vitrified microbeads and the quantity of microencapsulated phase change paraffin were as the influence factors, and taking the thermal conductivity as the response surface a three-dimensional response model for the thermal conductivity of mortar was established to seek the optimal mix ratio of thermal insulation mortar, minimizing the thermal conductivity of modified vitrified microbeads thermal insulation mortar. The findings show that microencapsulated phase change paraffin can significantly improve the thermal insulation perfor-mance of vitrification microbeads insulation mortar. When the amount of vitrification microbeads and microencapsulated phase change paraffin is 73.54% and 5.54%, respectively, and the water-binder ratio is 3.542, the thermal conductivity of the insulation mortar reduces by 35.71% compared with the maximum value of 0.070 W/(m·K) stipulated in the code. The accuracy of the Maxwell model to predict mortar thermal conductivity is from 94.7% to 99.9%.
Key words:  phase change paraffin    glazed hollow bead insulation mortar    response surface method    Maxwell model
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TU55+1  
基金资助: 甘肃省重点研发计划-工业类项目(23YFGA0052)
通讯作者:  *贾亮,博士,兰州理工大学土木工程学院副教授、硕士研究生导师。目前主要从事新型土木工程材料、黄土固化、环境岩土工程等方面的研究工作。jialiang@lut.edu.cn   
引用本文:    
贾亮, 张玮玮, 陈振瑞. 相变石蜡改性玻化微珠保温砂浆的导热性能[J]. 材料导报, 2025, 39(21): 24100132-5.
JIA Liang, ZHANG Weiwei, CHEN Zhenrui. The Thermal Conductivity of Glazed Hollow Bead Insulation Mortar Modified by Phase Change Paraffin. Materials Reports, 2025, 39(21): 24100132-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100132  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24100132
1 Gong J, Duan Z, Sun K, et al. Construction and Building Materials, 2016, 123, 274.
2 Tan S, Zhang X. Journal of Energy Storage, 2023, 61, 106772.
3 Jayalath A, Nicolas S R, Sofi M, et al. Construction and Building Materials, 2016, 120, 408.
4 Sun R R, Li H J, Huang F L, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(3), 662(in Chinese).
孙茹茹, 李化建, 黄法礼, 等. 硅酸盐通报, 2020, 39(3), 662.
5 Shi W, Wang C T. Bulletin of the Chinese Ceramic Society, 2015, 34 (12), 3517(in Chinese).
史巍, 王传涛. 硅酸盐通报, 2015, 34 (12), 3517.
6 Shi C, Wang P, Yang L. Materials China, 2022, 41(8), 607(in Chinese).
史琛, 王平, 杨柳. 中国材料进展, 2022, 41(8), 607.
7 Cheng X L, Mu R, Sun T, et al. Materials Reports, 2024, 38(5), 73(in Chinese).
成鑫磊, 穆锐, 孙涛, 等. 材料导报, 2024, 38(5), 73.
8 Long Y, Wang Y, Liu T L, et al. Materials Reports, 2024, 38(9), 272(in Chinese).
龙勇, 王宇, 刘天乐, 等. 材料导报, 2024, 38(9), 272.
9 Shi J, Tan J, Liu B, et al. Journal of Energy Storage, 2020, 32, 101719.
10 Fan S J, Wang P M. Journal of Building Materials, 2017, 20(1), 118(in Chinese).
范树景, 王培铭. 建筑材料学报, 2017, 20(1), 118.
11 Zhou L M, Wang C, Zeng Q P, et al. Concrete, 2016 (6), 106(in Chinese)
周立民, 王冲, 曾欠谱, 等. 混凝土, 2016 (6), 106.
12 Wang Z X, Liu Y Z, Huo Y T, et al. Concrete, 2019 (8), 121(in Chinese)
王朝旭, 刘元珍, 霍英涛, 等. 混凝土, 2019 (8), 121.
13 Wang H F. Concrete, 2013, 7, 99(in Chinese)
王海峰. 混凝土, 2013, 7, 99.
14 Hou Y F, Zhang Y, Huang T Y. Journal of Beijing University of Civil Engineering and Architecture, 2021, 37(4), 1(in Chinese)
侯云芬, 张莹, 黄天勇. 北京建筑大学学报, 2021, 37(4), 1.
15 Chen Z R. Preparation and properties of modified vitrified microsphere thermal insulation mortar. Master’s Thesis, Lanzhou University of Technology, China, 2023(in Chinese)
陈振瑞. 改性玻化微珠保温砂浆的研制及性能研究. 硕士学位论文, 兰州理工大学, 2023.
16 Joulin A, Zalewski L, Lassue S, et al. Applied Thermal Engineering, 2014, 66(1-2), 171.
17 Zhu L H, Lin H W, Han W. Materials Reports, 2023, 37 (12), 117(in Chinese)
朱丽华, 刘海林, 韩伟. 材料导报, 2023, 37 (12), 117.
18 Du Y B, Ge Y. Bulletin of the Chinese Ceramic Society, 2022(2), 50(in Chinese)
杜渊博, 葛勇. 硅酸盐学报, 2022(2), 50.
19 Chen C, Qian C X, Xu Y B. Journal of Building Materials, 2011, 14(1), 78(in Chinese)
陈春, 钱春香, 许燕波. 建筑材料学报, 2011, 14(1), 78.
20 Bao L L, Jin P F, Wang X, et al. Science Technology and Engineering, 2022, 22(19), 8327(in Chinese)
鲍玲玲, 靳鹏飞, 王雪, 等. 科学技术与工程, 2022, 22(19), 8327.
21 Islam S, Bhat G. Heat and Mass Transfer, 2023, 59(11), 2023.
22 Gong J W, Chen P, Cao G J, et al. Journal of Building Materials, 2023, 26(5), 465(in Chinese)
宫经伟, 陈鹏, 曹国举, 等. 建筑材料学报, 2023, 26(5), 465.
23 Zhou E S, Lu Z Y, Yan Y. Materials Reports, 2009, 23(6), 69(in Chinese)
周顺鄂, 卢忠远, 严云. 材料导报, 2009, 23(6), 69.
24 Pietrak K, Wiśniewski T S. Journal of Power Technologies, 2015, 95(1).
25 Shen M, Cui Y, He J, et al. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(5), 623.
[1] 陈自敏, 冉志红, 张艳, 宋泽冈, 袁博. 混凝土裂缝修复用改性环氧树脂的多目标优化[J]. 材料导报, 2025, 39(10): 24040223-9.
[2] 楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
[3] 刘向阳, 王议, 夏爽, 刘中清. 镍铁双氢氧化物的响应曲面法优化生长和电催化析氧性能研究[J]. 材料导报, 2024, 38(16): 23040152-5.
[4] 张东方, 梁威, 杨才千, 陈俊, 李敏, 许福, 徐利敏. 相变云砼石水泥基复合材料的制备及性能研究[J]. 材料导报, 2023, 37(23): 22060207-7.
[5] 周梅, 白金婷, 郭凌志, 张玉琢. 基于响应曲面法的煤矸石地聚物注浆材料配比优化[J]. 材料导报, 2023, 37(20): 22020068-9.
[6] 罗晓宇, 冯曰海, 赵鑫, 刘思余. 镁合金摆动多道增材层成形特征参数与尺寸控制规律研究[J]. 材料导报, 2023, 37(18): 22040093-7.
[7] 张义福, 张华, 况菁, 朱政强, 潘际銮. 铜/铝极耳超声波焊接响应曲面优化分析[J]. 材料导报, 2019, 33(11): 1842-1847.
[8] 高保东, 钟红荣, 吴婷芳, 谭翠, 张岩, 徐水. 丝素/海藻酸钠膜韧性的优化及膜释药机理分析[J]. 《材料导报》期刊社, 2018, 32(7): 1197-1201.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed