Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24060177-8    https://doi.org/10.11896/cldb.24060177
  高分子与聚合物基复合材料 |
明胶基智能材料的开发研究进展
王瑞瑞*
青海师范大学化学化工学院,西宁 810008
Research Progress of Gelatin-based Smart Materials
WANG Ruirui*
College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
下载:  全 文 ( PDF ) ( 36845KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着食品、皮革、纺织等行业的规模化发展,产生了大量的生物质废弃物,造成了严重的资源浪费和环境污染问题。从这些生物质废弃物中提取明胶开发仿生、耐用的智能材料已成为解决这一问题和促进行业可持续发展的关键。明胶是一种由线性多肽构成的高分子聚合物。作为亲水性物质,明胶在水溶液中表现出强的自组装能力。在特定条件(温度、离子强度、pH值等)下,明胶分子具有足够的灵活性,可以呈现各种构象。明胶的结构灵活性和可调性为开发明胶基智能材料创造了条件。由于明胶具有独特的氨基酸序列和生物相容性,通过分子结构设计和性能优化,研发多功能明胶基智能材料已成为研究热点。   本文首先介绍了明胶的组成和结构特性,分析了温敏型智能材料、pH响应型智能材料、湿敏型智能材料、盐敏型智能材料和光敏型智能材料五种明胶基智能材料的开发与应用现状,探讨了五种智能材料的发展趋势,指出了明胶基智能材料面临的挑战和未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王瑞瑞
关键词:  明胶  智能材料  可持续  生物聚合物    
Abstract: With the scale development of industries such as food, leather, and textiles, a large amount of biomass waste has been produced, resulting in serious resource waste and environmental pollution. Extracting gelatin from these biomass wastes to develop bionic, lightweight, and durable smart materials has become the key to solving this problem and promoting sustainable development. Gelatin is a kind of polymer composed of linear polypeptides. As a hydrophilic material, gelatin shows strong self-assembly ability in aqueous solution. Under certain conditions (tempe-rature, ionic strength, pH value, etc.), gelatin molecules have enough flexibility to present a variety of conformations. Structural flexibility and adjustability of gelatin create conditions for the development of gelatin-based smart materials. Due to the unique amino acid sequence and biocompatibility of gelatin, the research and development of multifunctional gelatin-based materials has become a hotspot through molecular structure design and performance optimization. Firstly, the composition of gelatin and its structural characteristics are introduced. Then, the development and application status of five kinds of gelatin-based smart materials, such as temperature sensitive material, pH responsive material, humidity sensitive material, salt sensitive material and photosensitive material, are analyzed. The development trend of five types of smart materials is discussed. Finally, the challenges faced and future research direction of gelatin-based smart materials are proposed.
Key words:  gelatin    smart materials    sustainability    biopolymer
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TQ93  
基金资助: 青海省“昆仑英才·高端创新创业拔尖人才”千人计划项目(2020)
通讯作者:  *王瑞瑞,青海师范大学化学化工学院副教授、硕士研究生导师。目前主要从事生物质功能材料的研发工作。wangruirui206@163.com   
引用本文:    
王瑞瑞. 明胶基智能材料的开发研究进展[J]. 材料导报, 2025, 39(18): 24060177-8.
WANG Ruirui. Research Progress of Gelatin-based Smart Materials. Materials Reports, 2025, 39(18): 24060177-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060177  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24060177
1 Rahman S, Gogoi J, Dubey S, et al. International Journal of Biological Macromolecules, 2024, 25, 128197.
2 Saber M M. Colloids and Surfaces B:Biointerfaces, 2019, 183, 110407.
3 Li C, Li F, Wang K, et al. Inorganic Chemistry Communications, 2023, 155, 110965.
4 Zhang L, Chen L, Xiang Y, et al. Chemical Engineering Journal, 2021, 406, 126839.
5 Chuang Y C, Chen Y P, Wu H M, et al. Journal of Drug Delivery Science and Technology, 2022, 74, 103563.
6 Fu B, Liu Q, Liu M, et al. Chinese Chemical Letters, 2022, 33(10), 4577.
7 Li X, Yang X, Deng H, et al. International Journal of Biological Macromolecules, 2020, 150, 161.
8 Singh B G, Bagora N, Nayak M, et al. Pharmaceutics, 2024, 16(3), 356.
9 Al-Nimry S, Dayah A A, Hasan I, et al. Marine Drugs, 2021, 19(3), 145.
10 Yang W, Gong Y, Wang Y, et al. RSC Advances, 2024, 14(7), 4880.
11 Abdollahi M, Goli S A H, Soltanizadeh N. European Journal of Lipid Science and Technology, 2020, 122(2), 1900196.
12 Takei T, Yoshihara R, Danjo S, et al. International Journal of Biological Macromolecules, 2020, 149, 140.
13 Aramwit P, Jaichawa N, Ratanavaraporn J, et al. Materials Express, 2015, 5(3), 241.
14 Sukhlaaied W, Riyajan S A. Polymer Bulletin, 2016, 73, 2303.
15 Mikhailov O V. International Journal of Molecular Sciences, 2023, 24(4), 3583.
16 Abedinia A, Nafchi A M, Sharifi M, et al. Trends in Food Science & Technology, 2020, 104, 14.
17 Duconseille A, Astruc T, Quintana N, et al. Food Hydrocolloids, 2015, 43, 360.
18 Zheng Y, Liu Z, Jing Y, et al. Sensors and Actuators B-Chemical, 2015, 210, 389.
19 Duconseille A, Wien F, Audonnet F, et al. Food Hydrocolloids, 2017, 66, 378.
20 Chen L, Du Y, Huang R. Polymer International, 2003, 52(1), 56.
21 Pei Y, Zheng Y, Li Z, et al. Journal of Colloid and Interface Science, 2021, 582, 610.
22 Yang J, Sun X, Kang Q, et al. Polymer Testing, 2021, 93, 106879.
23 Sarwar T, Raza Z A, Nazeer M A, et al. International Journal of Biological Macromolecules, 2024, 256, 128525.
24 Altimari I, Spizzirri U G, Iemma F, et al. Journal of Applied Polymer Science, 2012, 125(4), 3006.
25 Hou M, Wang X, Yue O, et al. Biomaterials Advances, 2022, 134, 112556.
26 Gheysoori P, Paydayesh A, Jafari M, et al. European Polymer Journal, 2023, 186, 111846.
27 Chen C C, Wang J M, Huang Y R, et al. Pharmaceutics, 2023, 15(4), 1090.
28 Zhang J, Liang W, Lang M. European Polymer Journal, 2023, 199, 112414.
29 Sui M Y, Liu X S, Zhao C, et al. Polymer Materials Science and Engineering, 2019, 35(7), 13 (in Chinese).
隋美玉, 刘夕升, 赵聪, 等. 高分子材料科学与工程, 2019, 35(7), 13.
30 Yang S, Zhang Y, Wang T, et al. ACS Applied Materials & Interfaces, 2020, 2(41), 46701.
31 Yang X, Cao L, Wang J, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(29), 10726.
32 Yam K L, Takhistov P T, Miltz J. Journal of Food Science, 2005, 70(1), R1.
33 Jafarzadeh S, Yildiz Z, Yildiz P, et al. International Journal of Biological Macromolecules, 2024, 261, 129647.
34 Zhang Z, Zhou S, Wang X, et al. Materials Today Communications, 2023, 36, 106425.
35 Omer A M, Sadik W A A, El-Demerdash A G M, et al. Journal of Saudi Chemical Society, 2021, 25(12), 101384.
36 Mir A, Kumar A, Alam J, et al. International Journal of Biological Macromolecules, 2023, 252, 126015.
37 Santoro M, Tatara A M, Mikos A G. Journal of Controlled Release, 2014, 190, 210.
38 Sionkowska A. Progress in Polymer Science, 2021, 122, 101452.
39 Mathew S A, Arumainathan S. ACS Omega, 2022, 7(22), 18732.
40 Bhattacharyya S K, Dule M, Paul R, et al. ACS Biomaterials Science & Engineering, 2020, 6(10), 5662.
41 Etxabide A, Maté J I, Kilmartin P A. Food Hydrocolloids, 2021, 115, 106593.
42 Zheng T, Tang P, Li G. Food Chemistry, 2023, 402, 134428.
43 Pang S, Wang Y, Jia H, et al. International Journal of Biological Macromolecules, 2023, 230, 123156.
44 Etxabide A, Yang Y, Maté J I, et al. Food Packaging and Shelf Life, 2022, 33, 100896.
45 Zong Z, Liu M, Chen H, et al. Food Chemistry, 2023, 405, 134839.
46 Zepon K M, Martins M M, Marques M S, et al. Carbohydrate Polymers, 2019, 206, 362.
47 Ding F, Wu R, Huang X, et al. Food Packaging and Shelf Life, 2024, 42, 101255.
48 Zhou S, Li N, Peng H, et al. Foods, 2023, 12(20), 3719.
49 Ge Y, Li Y, Bai Y, et al. International Journal of Biological Macromolecules, 2020, 155, 1296.
50 Cetinkaya T, Bildik F, Altay F, et al. Food Chemistry, 2024, 437, 137843.
51 Sadi A, Ferfera-Harrar H. International Journal of Biological Macromolecules, 2023, 242, 124964.
52 Jancikova S, Jamróz E, Kulawik P, et al. International Journal of Biological Macromolecules, 2019, 131, 19.
53 Amjadi S, Gholizadeh S, Hamishehkar H, et al. Journal of Polymers and the Environment, 2024, 32(2), 884.
54 Roy S, Rhim J W. ACS Applied Bio Materials, 2020, 4(1), 770.
55 Wang J, Sun X, Zhang H, et al. Food Hydrocolloids, 2022, 124, 107258.
56 Riahi Z, Khan A, Rhim J W, et al. International Journal of Biological Macromolecules, 2023, 249, 126040.
57 Choi M M, Tse O L. Analytica Chimica Acta, 1999, 378, 127.
58 Yu W, Huang C, Xia C, et al. Measurement Science and Technology, 2022, 34(1), 15101.
59 Wang X, Farrell G, Lewis E, et al. Journal of Lightwave Technology, 2017, 35(18), 4087.
60 Ma Z, Yu Y, Wu K, et al. Chemical Engineering Journal, 2023, 471, 144788.
61 Khan M, Rehman M M, Khan S A, et al. Frontiers in Materials, 2023, 10, 1233136.
62 Pereira P F, Picciani P H, Calado V M, et al. Food and Bioprocess Technology, 2020, 13(6), 1063.
63 Song H, Wang H, Gan T, et al. Advanced Materials Technologies, 2024, 9(14), 2301483.
64 Zhou J, Zhang R, Xu R, et al. Advanced Functional Materials, 2022, 32(21), 2111406.
65 Zhou J, Li Y, Xie L, et al. Materials Today Energy, 2021, 21, 100712.
66 Petros S, Tesfaye T, Ayele M. Journal of Engineering, 2020, 12(1), 8866582.
67 Chen L, Qiang T, Chen X, et al. Chemical Engineering Journal, 2021, 419, 129639.
68 Yang J, Guan C, Yu Z, et al. Sensors and Actuators B-Chemical, 2020, 305, 127555.
69 Swain P, Ronghe A, Bhutani U, et al. The Journal of Physical Chemistry B, 2019, 123(5), 1186.
70 Crevenna A H, Naredi-Rainer N, Lamb D C, et al. Biophysical Journal, 2012, 102(4), 907.
71 Sow L C, Yang H. Food Hydrocolloids, 2015, 45, 72.
72 Löwenberg C, Julich-Gruner K K, Neffe A T, et al. Biomacromolecules, 2020, 21(6), 2024.
73 Chen F, Yang K, Zhao D, et al. RSC Advances, 2019, 9(32), 18619.
74 Calixto S, Ganzherli N, Gulyaev S, et al. Molecules, 2018, 23(8), 2064.
75 Feng X C. Temperature- and pH double responsive supramolecular lubricating hydrogel. Master's Thesis, Changchun University of Technology, China, 2022 (in Chinese).
冯笑晨. pH和温度两重响应超分子润滑水凝胶. 硕士学位论文, 长春工业大学, 2022.
76 Tan S X, Yue J, Huang B X, et al. Information Recording Materials, 2000, 1(1-2), 17(in Chinese).
谭庶欣, 岳军, 黄碧霞, 等. 信息记录材料, 2000, 1(1-2), 17.
77 Chen Z C, Liu H J, Chang Y C, et al. ACS Applied Nano Materials, 2023, 6(11), 9298.
78 Carvalho J A, da Silva Abreu A, Tedesco A C, et al. Journal of Biomaterials Science, Polymer Edition, 2019, 30(7), 508.
79 Finny A S, Jiang C, Andreescu S. ACS Applied Materials & Interfaces, 2020, 12(39), 43911.
80 Ambrósio J A, Pinto B C, Marmo V L M, et al. Photodiagnosis and Photodynamic Therapy, 2022, 38, 102818.
81 Bu L L, Wang H Q, Pan Y, et al. Journal of Nanobiotechnology, 2021, 19, 1.
82 Lai K R, Hu X Q, Liu Y X, et al. Applied Chemical Industry, 2021, 50(12), 3360 (in Chinese).
赖坤容, 胡兴泉, 刘悦颖, 等. 应用化工, 2021, 50(12), 3360.
83 Ganeson K, Tan X M C, Abdullah A A A, et al. Pharmaceutics, 2023, 15(9), 2356.
[1] 刘冬旭, 宋皓炜, 刘鹏, 姚青荣, 王仲民, 邓健秋. 天然生物聚合物衍生硬炭材料的微观结构与储钠性能[J]. 材料导报, 2025, 39(16): 24070125-6.
[2] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[3] 李良, 赵修贤, 王彬彬, 杨帅军, 聂永, 蒋绪川. 热致变色过渡金属配合物的变色机理及应用[J]. 材料导报, 2023, 37(4): 21010049-11.
[4] 史志铭. 利用沙漠砂合成陶瓷的研究进展与应用前景[J]. 材料导报, 2023, 37(24): 22040360-11.
[5] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[6] 赵明媚, 张进秋, 彭志召, 张建, 李欣. 剪切增稠液体理论基础和工程应用进展概述[J]. 材料导报, 2022, 36(9): 20070135-8.
[7] 肖维新, 袁静, 严开祺, 张敬杰. 生物聚合物气凝胶的制备与应用研究进展[J]. 材料导报, 2022, 36(20): 21030322-10.
[8] 王旭昊, 侯鑫, 甘珑, 汪愿, 边庆华, 张久鹏. 凝灰岩石粉在复合胶凝材料中的火山灰活性及水化性能评估[J]. 材料导报, 2022, 36(16): 22040394-8.
[9] 李曼, 武丁胜, 魏安方, 刘锁, 赵玲玲, 王衡, 王克付, 凤权. 静电纺丝聚己内酯/明胶载姜黄素生物活性敷料的制备和性能[J]. 材料导报, 2022, 36(11): 21010039-7.
[10] 潘一, 徐明磊, 郭奇, 廖广志, 杨双春, Kantoma Daniel Bala. 钻井液智能堵漏材料研究进展[J]. 材料导报, 2021, 35(9): 9223-9230.
[11] 杨广鑫, 潘家保, 周陆俊, 高洪, 王晓雷. 磁流变脂材料及其应用研究进展[J]. 材料导报, 2021, 35(23): 23183-23191.
[12] 张雨萌, 李洁, 夏进军, 张育新. 4D打印技术:工艺、材料及应用[J]. 材料导报, 2021, 35(1): 1212-1223.
[13] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[14] 邓友生, 蔡梦真, 王一雄, 苏家琳, 孙雅妮. 可回收锚件机理与工程应用研究[J]. 材料导报, 2019, 33(Z2): 473-479.
[15] 刘德乡, 刘武, 叶志会, 吴志平. 生物质基温敏智能材料的研究进展[J]. 材料导报, 2019, 33(19): 3336-3346.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[3] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[4] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[5] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[6] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[7] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed