Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24060080-8    https://doi.org/10.11896/cldb.24060080
  无机非金属及其复合材料 |
杂散电流作用下混杂纤维混凝土SO42-迁移与反应规律研究
张路1, 徐智明1, 文波2,*, 牛荻涛2, 李辉1, 梁浩男1, 嵇智远2
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 西安建筑科技大学土木工程学院,西安 710055
Research on SO42- Migration and Reaction of Hybrid Fiber Concrete Under Stray Current
ZHANG Lu1, XU Zhiming1, WEN Bo2,*, NIU Ditao2, LI Hui1, LIANG Haonan1, JI Zhiyuan2
1 College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 17243KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究杂散电流与硫酸盐共同作用对混杂纤维混凝土耐久性的影响,通过对玄武岩/聚丙烯纤维增强混凝土进行硫酸根离子和腐蚀产物测试,研究其在杂散电流与硫酸盐共同作用下的损伤机理及SO42-迁移与反应规律。结果表明:(1)随着杂散电流密度的增大,混杂纤维混凝土中SO42-浓度也在增大;与1.2 mA/dm2电流密度相比,2.4 mA/dm2和4.8 mA/dm2的杂散电流作用下混凝土的SO42-浓度分别增大了64.5%和133.1%。(2)混杂纤维混凝土抗硫酸盐侵蚀能力排序为NC-30<BPC-30-0.2<BC-30-0.1<PC-30-0.1≈BPC-30-0.1<BC-40-0.1<BC-50-0.1。玄武岩和聚丙烯纤维的最佳体积掺量为0.1%,超过限值后存在“负混杂效应”。(3)随着杂散电流搬运OH-的迁移,纤维混凝土内部pH值降低,Ca(OH)2含量减小。此外,根据Fick第二扩散定律,提出了杂散电流对SO42-反应量的影响系数,建立了混杂纤维混凝土SO42-扩散系数模型。通过引入纤维影响系数和几何弯曲度系数,建立了杂散电流与硫酸盐共同作用下混杂纤维混凝土的SO42-扩散方程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张路
徐智明
文波
牛荻涛
李辉
梁浩男
嵇智远
关键词:  混杂纤维  杂散电流  损伤机理  SO42-迁移  SO42-反应    
Abstract: To explore the effect of stray current and sulfate on the durability of hybrid fiber concrete, the damage mechanism, SO42- migration and reaction rule of basalt/polypropylene fiber reinforced concrete under the action of stray current and sulfate were studied in this work by testing sulfate ions and erosion products. The results show that:(ⅰ) With the increase of stray current density, the SO42- concentration in hybrid fiber concrete also increases. Compared with the SO42- concentration of concrete under the current density of 1.2 mA/dm2, the corresponding values of 2.4 mA/dm2 and 4.8 mA/dm2 increase by 64.5% and 133.1%, respectively. (ⅱ) The sulfate resistances of hybrid fiber concrete specimens can be sequenced as NC-30<BPC-30-0.2<BC-30-0.1<PC-30-0.1≈BPC-30-0.1<BC-40-0.1<BC-50-0.1. The optimal content of basalt and polypropylene fiber is 0.1vol%, and the “negative mixing effect” will occur when fiber content exceeds this limit value. (ⅲ) With the migration of OH- transported by stray current, the internal pH value of concrete decreases and the content of Ca(OH)2 decreases. Furthermore, according to Fick's second diffusion law, this work tried to propose the influence coefficient of stray current on SO42- reaction quantity, and to establish a SO42- diffusion coefficient model of hybrid fiber concrete. By introducing fiber influence coefficient and geometric bending coefficient, the SO42- diffusion equation of hybrid fiber concrete considering the coupling of stray current and sulfate could be established.
Key words:  hybrid fiber    stray current    damage mechanism    SO42- migration    SO42- reaction
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52208203;52378535);中国博士后科学基金(2023MD734209);陕西省重点研发计划项目(2024GH-YBXM-03);陕西省教育厅科研项目(23JP081);陕西省大学生创新创业训练计划(202410703002)
通讯作者:  *文波,西安建筑科技大学土木工程学院教授、博士研究生导师。目前主要从事混凝土结构耐久性、混凝土结构抗火性能等方面的研究。wenbo_mail@163.com   
作者简介:  张路,西安建筑科技大学材料科学与工程学院讲师、硕士研究生导师。目前主要从事混凝土结构耐久性等方面的研究。
引用本文:    
张路, 徐智明, 文波, 牛荻涛, 李辉, 梁浩男, 嵇智远. 杂散电流作用下混杂纤维混凝土SO42-迁移与反应规律研究[J]. 材料导报, 2025, 39(18): 24060080-8.
ZHANG Lu, XU Zhiming, WEN Bo, NIU Ditao, LI Hui, LIANG Haonan, JI Zhiyuan. Research on SO42- Migration and Reaction of Hybrid Fiber Concrete Under Stray Current. Materials Reports, 2025, 39(18): 24060080-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060080  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24060080
1 Susanto A, Koleva D A, Breugel K V, et al. Journal of Advanced Concrete Technology, 2017, 15(6), 244.
2 Fang Z, Wang C, Hu H, et al. Construction and Building Materials, 2022, 359, 129489.
3 Fang Z, Li Z, Zhou Y, et al. Journal of Building Engineering, 2024, 87, 108996.
4 Luo Y, Wang C, Peng X, et al. Journal of Building Materials, 2016, 19(6), 998 (in Chinese).
罗遥凌, 王冲, 彭小芹, 等. 建筑材料学报, 2016, 19(6), 998.
5 Huang Q, Liu H, Wang Q, et al. Developments in the Built Environment, 2024, 17, 100303.
6 Fang Z, Wang C, Luo Y, Journal of Chinese Ceramic Society, 2018, 46(8), 1095 (in Chinese).
方正, 王冲, 罗遥凌. 硅酸盐学报, 2018, 46(8), 1095.
7 Samson E, Marchand J. Computers and Structures, 2007, 85(23-24), 1740.
8 Fang Z, Li Z, Zhou Y, et al. Construction and Building Materials, 2023, 408, 133723.
9 Ahmed S, Maalej M. Construction and Building Materials, 2009, 23(1), 96.
10 Li D, Niu D, Fu Q, et al. Cement and Concrete Composites, 2020, 109, 103555.
11 Niu D, Luo Y, Su L, et al. Materials Reports, 2022, 36(13), 115 (in Chinese).
牛荻涛, 罗扬, 苏丽, 等. 材料导报, 2022, 36(13), 115.
12 Wang Z, Zhao K, Li Z, et al. Chemical Engineering Transactions, 2017, 62, 961.
13 Behfarnia K, Farshadfar O. Construction and Building Materials, 2013, 38, 64.
14 Mardani-Aghabaglou A, Özen S, Altun M G. Journal of Green Building, 2018, 13(2), 20.
15 Li Y, Zhang S. Journal of Northeastern University (Natural Science Edition), 2016, 37(6), 895 (in Chinese).
李艺, 张爽. 东北大学学报(自然科学版), 2016, 37(6), 895.
16 He R, Tan Y, Wang S, et al. Bulletin of the Chinese Ceramic Society, 2018, 37, 232.
17 Sun D, Wang H, Liu K, et al. Materials Reports, 2020, 34(14), 14079 (in Chinese).
孙道胜, 王辉, 刘开伟, 等. 材料导报, 2020, 34(14), 14079.
18 Jiang J, Zheng H, Sun G, et al. Journal of Building Materials, 2023, 26(10), 1047 (in Chinese).
蒋金洋, 郑皓睿, 孙国文, 等. 建筑材料学报, 2023, 26(10), 1047.
19 Yin G, Shan Z, Wen X, et al. Materials Reports, 2024, 38(19), 102 (in Chinese).
殷光吉, 单紫琪, 温小栋, 等. 材料导报, 2024, 38(19), 102.
20 Romualdi J P, Batson G B. Journal of the Engineering Mechanics Division, 1963, 89(3), 147.
21 Neithalath N, Jain J. Cement and Concrete Research, 2010, 40(7), 1041.
22 Yang P, Sant G, Neithalath N. Cement and Concrete Composites, 2017, 82, 80.
23 Samson E, Marchand J, Robert J L, et al. International Journal for Numerical Methods in Engineering, 1999, 46(12), 2043.
24 Zuo X, Sun W, Cheng Y, et al. Computers and Concrete, 2010, 7(5), 421.
[1] 文波, 田伟, 张路, 牛荻涛, 嵇智远. 玄武岩-聚丙烯纤维增强混凝土在杂散电流与硫酸盐作用下的劣化规律[J]. 材料导报, 2025, 39(18): 24040090-7.
[2] 张雷, 姜超, 朱学军, 谢群, 刘文胜, 赵振振, 郑元武, 李阳. 混杂纤维水泥基复合材料弯曲性能试验研究[J]. 材料导报, 2025, 39(14): 24040120-8.
[3] 甘德清, 于泽皞, 刘志义, 孙海宽. 水浸作用下磁铁矿石动态破碎特征及损伤机理[J]. 材料导报, 2025, 39(13): 24060165-10.
[4] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[5] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[6] 张若楠, 韦朋余, 王珂, 曾庆波, 王连, 宋培龙. 海水环境下船用高强钢腐蚀疲劳损伤行为研究[J]. 材料导报, 2024, 38(23): 23090176-6.
[7] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[8] 王家滨, 张凯峰, 郑康华, 符梦涛. 完全浸泡再生混凝土Mg2+-SO42--Cl-侵蚀耐久性损伤规律与机理[J]. 材料导报, 2024, 38(18): 23050184-11.
[9] 杨荣周, 徐颖, 刘家兴, 丁进甫, 谢昊天. 砂岩与类砂岩材料的动态力学及破坏特征对比分析[J]. 材料导报, 2023, 37(23): 22030265-11.
[10] 杨国梁, 毕京九, 董智文, 刘依, 韩子默, 李旭光. 基于数字图像相关技术的混杂纤维混凝土动态抗拉性能试验研究[J]. 材料导报, 2023, 37(21): 22030038-9.
[11] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[12] 王家滨, 侯泽宇, 张凯峰, 李恒. 再生混凝土高浓度Mg2+-SO42--Cl-复合盐侵蚀耐久性[J]. 材料导报, 2022, 36(23): 21080171-11.
[13] 罗志强, 赖家美, 黄志超, 莫明智, 李美艳. 缝合碳纤维泡沫夹芯复合材料反复低速冲击性能研究[J]. 材料导报, 2022, 36(19): 21050268-8.
[14] 牛荻涛, 罗扬, 苏丽, 黄大观. 玄武岩-聚丙烯混杂纤维增强混凝土气孔结构分形分析[J]. 材料导报, 2022, 36(13): 20120198-6.
[15] 孙科科, 彭小芹, 冉鹏, 王淑萍, 曾路, 李静静, 王双. 地聚合物混凝土抗冻性影响因素[J]. 材料导报, 2021, 35(24): 24095-24100.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed