Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24080059-11    https://doi.org/10.11896/cldb.24080059
  高分子与聚合物基复合材料 |
光催化解聚木质素及其模型化合物的研究进展
唐瑞欣1,2, 朱子琪1,2, 王玲1,2, 杨培1,2,*, 周晓燕1,2,*
1 南京林业大学林业资源高效加工利用协同创新中心,南京 210037
2 南京林业大学材料科学与工程学院,南京 210037
Research Progress on Photocatalytic Depolymerization of Lignin and Its Model Compounds
TANG Ruixin1,2, ZHU Ziqi1,2, WANG Ling1,2, YANG Pei1,2,*, ZHOU Xiaoyan1,2,*
1 Collaborative Innovation Center for Efficient Processing and Utilization of Forestry Resources of Nanjing Forestry University, Nanjing 210037, China
2 School of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
下载:  全 文 ( PDF ) ( 27941KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为自然界含量最多的天然芳香族化合物,木质素用于生产精细化学品和可再生燃料是绿色化学研究领域的热点之一,其中,木质素高效解聚是实现其高值化利用的关键。近年来,光催化解聚木质素作为一种温和绿色的可持续解聚策略备受关注。该策略能够选择性地断裂C-O和C-C连接键,并将木质素转化为高附加值的芳香族单体。对此,本文概述了用于光催化解聚木质素及其模型化合物的均相和非均相催化剂,进一步阐释了C-O和C-C连接键裂解的反应途径和催化机理,深入探讨了光催化剂结构对催化效率、木质素转化率和产物收率的影响,对比评估了不同的反应装置在光催化解聚木质素体系中的适用性,最后就木质素光催化解聚面临的主要挑战和未来的发展方向提出建议和思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐瑞欣
朱子琪
王玲
杨培
周晓燕
关键词:  木质素  模型化合物  光催化剂  解聚机理  反应装置    
Abstract: Since lignin is the only renewable biopolymer that has abundant aromatic ring structure in nature, the depolymerization of lignin can provide raw materials for high value-added platform compounds and fine chemicals to relieve the security of fossil energy and the derivative environmental concerns. However, it is difficult to depolymerize lignin into monomeric phenols based on retaining the free phenolic hydroxyl groups and alcohol hydroxyl groups due to the complexity, recalcitrance and low chemical reactivity of lignin itself. Recently, photocatalysis has become a sustainable and fascinated paradigm for the high-quality conversion of lignin because of its ability to accurately cleave the C-O and C-C bonds of lignin and its model compounds under mild conditions. Herein, both homogeneous and heterogeneous photocatalysts were introduced and discussed about how to increase their photocatalytic performances by elemental doping and defect design. This review also analyzed the reaction pathways and mechanisms involved in the process of lignin depolymerization. In addition, the suitability and rationality of different reaction devices were evaluated in a comparative manner, especially in the efficiency and selectivity of photocatalytic depolymerization. Finally, the existing problems and feasible solutions in terms of this strategy were proposed, which may provide the basis and reference for the high-valued green transformation of lignin biomass.
Key words:  lignin    model compound    photocatalyst    depolymerization mechanism    reaction device
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  O636.2  
基金资助: 国家自然科学基金(32271784)
通讯作者:  杨培,南京林业大学材料科学与工程学院博士后。目前主要从事生物质基功能材料与绿色胶粘剂等方面的研究工作。peiyang@njfu.edu.cn;周晓燕,博士,南京林业大学材料科学与工程学院教授、博士研究生导师。目前主要从事生物质先进功能材料等方面的研究。zhouxiaoyan@njfu.edu.cn   
作者简介:  唐瑞欣,南京林业大学材料科学与工程学院硕士研究生,在周晓燕教授和杨培博士的指导下开展光催化氧化降解木质素及木材胶粘剂改性方向的研究。
引用本文:    
唐瑞欣, 朱子琪, 王玲, 杨培, 周晓燕. 光催化解聚木质素及其模型化合物的研究进展[J]. 材料导报, 2025, 39(16): 24080059-11.
TANG Ruixin, ZHU Ziqi, WANG Ling, YANG Pei, ZHOU Xiaoyan. Research Progress on Photocatalytic Depolymerization of Lignin and Its Model Compounds. Materials Reports, 2025, 39(16): 24080059-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080059  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24080059
1 Ma Q Z, Zhang X J. Scientific Reports, 2022, 12(1), 19136.
2 Nie M C, Huo S P, Kong Z W. Chemistry and Industry of Forest Pro-ducts, 2020, 30(5), 115 (in Chinese).
聂明才, 霍淑平, 孔振武. 林产化学与工业, 2010, 30(5), 115.
3 Zhao X K, Li H L, She D, et al. Biomass Chemical Engineering, 2018, 52(1), 41 (in Chinese).
赵新坤, 李赫龙, 佘雕, 等. 生物质化学工程, 2018, 52(1), 41.
4 Renders T, Schutyser W, Van Den Bosch S, et al. ACS Catalysis, 2016, 6(3), 2055.
5 Li L X, Dong L, Li D D, et al. ACS Catalysis, 2020, 10(24), 15197.
6 Luo Z C, Wang Y M, He M Y, et al. Green Chemistry, 2016, 18(2), 433.
7 Chen H, Wan K, Zhang F J, et al. Renewable and Sustainable Energy Reviews, 2021, 147, 111217.
8 Wu X J, Luo N C, Xie S J, et al. Chemical Society Reviews, 2020, 49(17), 6198.
9 Nguyen J D, Matsuura B S, Stephenson C R J. Journal of the American Chemical Society, 2014, 136(4), 1218.
10 Kosuke Suzuki, Noritaka Mizuno, Kazuya Yamaguchi. ACS Catalysis, 2018, 8(11), 10809.
11 Zhang M, Zheng L, Feng Y Q, et al. Green Chemistry, 2023, 25, 10091
12 Wu X J, Fan X T, Xie S J, et al. Nature Catalysis, 2018, 1(10), 772.
13 Zhang D K, Cai H T, Su Y Z, et al. Chem Catalysis, 2022, 2(8), 1893.
14 Hao Z K, Li S Y, Sun J R, et al. Applied Catalysis B:Environmental, 2018, 237, 366
15 Kobayakawa K, Sato Y, Nakamura S, et al. Bulletin of the Chemical Society of Japan, 1989, 62(11), 3433.
16 Xiao X Y, Han Y, Liu C, et al. Materials Today Energy, 2022, 30, 101190.
17 Wu K J, Liang J R, Liu X J, et al. Journal of Energy Chemistry, 2023, 84, 89.
18 Dai J H, Patti A F, Styles G N, et al. Green Chemistry, 2019, 21(8), 2005.
19 Xu J, Li M, Yang L Y, et al. Chemical Engineering Journal, 2020, 394, 125050.
20 Hou T T, Luo N C, Li H J, et al. ACS Catalysis, 2017, 7(6), 3850.
21 Chen H, Hong D H, Wan Kun, et al. Chinese Chemical Letters, 2022, 33(9), 4357.
22 Mazarji M, Alvarado-Morales M, Tsapekos P, et al. Environment International, 2019, 125, 172.
23 Wu KJ, Cao M L, Zeng Q, et al. Green Energy & Environment, 2023, 8(2), 383.
24 Chen J, Liu W X, Song Z P, et al. BioEnergy Research, 2018, 11(1), 166.
25 Zhang S S, Ou X Y, Xiang Q, et al. Chemosphere, 2022, 303, 135085.
26 Zhang J F, Sun J D, Suo C C, et al. Sustainable Energy Fuels, DOI:10. 1039/D4SE00741G
27 Luo N C, Wang M, Li H J, et al. ACS Catalysis, 2017, 7(7), 4571.
28 Li G M, Wang B, Zhang J, et al. Applied Surface Science, 2019, 478, 1056.
29 Chen R L, Li L F, Gong Y F, et al. Journal of Materials Science & Technology, 2024, 202, 67.
30 Giannakoudakis D A, Zormpa F F, Margellou A G, et al. Nanomaterials, 2022, 12, 1679.
31 Arora Shalini, Gupta Neeraj, Singh Vasundhara. Green Chemistry, 2020, 22, 2018.
32 Nguyen C H, Tran M L, Tran T T V, et al. Separation and Purification Technology, 2020, 232, 115962.
33 Kang Z H. Journal of Molecular Science, 2021, 37(6), 483 (in Chinese).
康振辉. 分子科学学报, 2021, 37(6), 483
34 Sharma S, Kumar S, Arumugam S M, et al. Applied Catalysis A:General, 2020, 602, 117730.
35 Liu H F, Li H J, Lu J M, et al. ACS Catalysis, 2018, 8(6), 4761.
36 Zhao M D, Li Y L, Wang J S. Chinese Journal of Engineering, 2022, 44(4), 641 (in Chinese).
赵梦迪, 李永利, 王金淑. 工程科学学报, 2022, 44(4), 641.
37 Liang D, Wu J C, Xie C, et al. Applied Catalysis B:Environmental, 2022, 317, 121690.
38 Geng Z X, Wang Y Y, Yang Z X. New Chemical Materials, 2021, 49(12), 269 (in Chinese).
耿忠兴, 王一越, 杨占旭. 化工新型材料, 2021, 49(12), 269.
39 Zhao H, Li C F, Liu L Y, et al. Journal of Colloid and Interface Science, 2021, 585, 694.
40 Cui M Y, Liang C, Zhao W, et al. Fuel Processing Technology, 2022, 238, 107481.
41 Liao A Z, He H C, Zhou Y, et al. Journal of Semiconductors, 2020, 41(9), 091709.
42 Xu J, Li M, Qiu J, et al. International Journal of Biological Macromolecules, 2021, 180, 403.
43 Kumer A, Ghalta R, Bal R, et al. Applied Catalysis B:Environment and Energy, 2024, 124494.
44 Niu Y, Guo C, Cao X, et al. Journal of Colloid and Interface Science, 2024, 677, 342.
45 Zhang Q, Chu Y C, Liu Z, et al. Applied Catalysis B:Environment and Energy, 2023, 331, 122688.
46 Dai D, Qiu J, Xia G, et al. International Journal of Biological Macromolecules, 2023, 227, 1317.
47 Liao H, Zhou Y, Chen Z, et al. ACS Catalysis, 2024, 14(8), 5539.
48 Dai D, Qiu J, Xia G, et al. ACS Catalysis, 2023, 13(22), 14987.
49 Liu W, Jiang C, Feng J, et al. International Journal of Biological Macromolecules, 2024, 260, 129587.
50 Liu X, Jiang Z, Cao X, et al. Green Chemistry, 2024, 26, 1935.
51 Luo J, Zhang X, Lu J Z, et al. ACS Catalysis, 2017, 7(8), 5062.
52 Luo J, Zhang J. The Journal of Organic Chemistry, 2016, 81(19), 9131.
53 Kang Y, Lu X M, Zhang G J, et al. ChemSusChem, 2019, 12(17), 4005.
54 Wang X T, Chu S, Shao J J, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(35), 11555.
55 Wang Y L, He J H, Zhang Y T. CCS Chemistry, 2020, 2(3), 107.
56 Wang M, Lu J M, Zhang X C, et al. ACS Catalysis, 2016, 6(9), 6086.
57 Cao Y, Wang N, He X, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(11), 15032.
58 Luo N C, Wang M, Li H J, et al. ACS Catalysis, 2016, 6(11), 7716.
59 Kim S, Chmely S C, Nimlos M R, et al. The Journal of Physical Chemistry Letters, 2011, 2(22), 2846.
60 Shuai L, Sitison J, Sadula S, et al. ACS Catalysis, 2018, 8(7), 6507.
61 Gazi S, Hung Ng W K, Ganguly R, et al. Chemical Science, 2015, 6(12), 7130.
62 Liu H F, Li H J, Luo N C, et al. ACS Catalysis, 2020, 10(1), 632.
63 Wu X J, Lin J C, Zhang H Z, etal. Green Chemistry, 2021, 23(24), 10071.
64 Tucker J W, Zhang Y, Jamison T F, et al. Angewandte Chemie International Edition, 2012, 51(17), 4144.
65 Cambié D, Bottecchia C, Straathof N J W, et al. Chemical Reviews, 2016, 116(17), 10276.
66 Li S Y, Hao Z K, Wang KX, et al. Chemical Communications, 2020, 56(76), 11243.
67 Colmenares J C, Varma R S, Nair V. Chemical Society Reviews, 2017, 46(22), 6675.
[1] 李成晗, 朱旭东, 李依萍, 燕红. 利用木质素碳量子点提升UIO-66-NH2材料光催化水解产氢效率研究[J]. 材料导报, 2025, 39(15): 24060189-8.
[2] 谢雨兮, 吴双双, 方晓阳, 徐伟. 天然高分子络合无机纳米复合抗菌剂研究进展[J]. 材料导报, 2025, 39(13): 24040133-11.
[3] 张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
[4] 姜波, 焦欢, 郭新宇, 金永灿. 木质素熔融沉积式3D打印的分子结构-流变学响应关系研究进展[J]. 材料导报, 2024, 38(11): 22100182-8.
[5] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[6] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[7] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[8] 刘毅, 冯紫娟, 贾雯, 吴雪, 郑旭煦, 袁小亚. 一步溶剂热法合成Bi2S3/BiOBr多级异质结及其增强可见光光催化去除RhB的研究(英文)[J]. 材料导报, 2022, 36(24): 21030140-8.
[9] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[10] 陈浩伟, 余先纯, 张传艳, 李銮玉, 孙德林, 郝晓峰. 木质素基模板炭的制备及电化学性能[J]. 材料导报, 2021, 35(24): 24164-24171.
[11] 陈欢, 汪宗涛, 陈仕清, 范东斌. 木质素环氧化接枝物及其制备大豆蛋白胶黏剂研究[J]. 材料导报, 2021, 35(20): 20190-20194.
[12] 余先纯, 孙德林, 计晓琴, 王张恒. 木质素基碳纳米片组装木陶瓷电极的结构调控与电化学储能[J]. 材料导报, 2021, 35(2): 2012-2018.
[13] 杨淑敏, 刘杏娥, 尚莉莉, 马建锋, 田根林, 江泽慧. 竹材木质素特性及表征方法研究进展[J]. 材料导报, 2020, 34(7): 7177-7182.
[14] 何正文, 田红, 黄章俊, 胡章茂, 刘威. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
[15] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed