Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24060208-8    https://doi.org/10.11896/cldb.24060208
  金属与金属基复合材料 |
锂金属电池负极集流体用多孔铜箔的研究进展
肖思琪2, 李勇1,2,*, 刘子梁2, 梁淑贞2, 刘玉峰2
1 江西理工大学宜春锂电新能源产业研究院,江西 宜春 336023
2 江西理工大学材料科学与工程学院,江西 赣州 341000
Research Progress of Porous Copper Foil for Negative Current Collector in Lithium Metal Batteries
XIAO Siqi2, LI Yong1,2,*, LIU Ziliang2, LIANG Shuzhen2, LIU Yufeng2
1 Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Yichun 336023, Jiangxi, China
2 School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
下载:  全 文 ( PDF ) ( 29007KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多孔铜箔作为锂金属电池负极集流体具有出色的导电性、巨大的表面积和良好的经济成本效益。普通二维铜箔在充放电过程中存在锂枝晶的无控生长以及脱落的枝晶变成“死锂”使得容量降低等问题,严重影响了电池的寿命和循环稳定性;而多孔铜箔的三维结构则可以有效缓解锂枝晶生长的问题,其表面和内部的大量孔隙使得容纳活性物质的空间大大增加,孔隙边缘的高曲率使得该区域的电流密度更高,可诱导锂在孔洞内部沉积,有效抑制锂枝晶在表面的生长,而亲锂化改性则能降低锂在金属铜上成核的过电位,有效稳定锂沉积行为。本文介绍了以多孔铜箔为锂金属电池负极集流体的研究现状及对铜箔亲锂化改性的制备方法,分析了多孔铜箔的储锂机制和亲锂化改性的优势,展望了多孔铜箔集流体的应用前景,并指出了当前研究中存在的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖思琪
李勇
刘子梁
梁淑贞
刘玉峰
关键词:  多孔铜集流体  脱合金  亲锂化改性  锂金属电池    
Abstract: Porous copper, as an anode collector for lithium metal batteries, has excellent conductivity, a huge surface area and good economic cost-effectiveness. In the process of charging and discharging, there are problems such as uncontrolled growth of lithium dendrites and the shedding of dendrites into "dead lithium", thus reducing the capacity, which seriously affects the battery’s lifespan and cycling stability, whereas the 3D structure of the porous copper foil can effectively alleviate the problem of dendrite growth, and the large number of pore spaces on the surface and in the interior greatly increases the space to accommodate the active substance, the high curvature of the pore edges makes the current density in this region higher, which can induce lithium deposition to the inside of the pores, effectively avoiding lithium dendritic growth on the surface, and the lithophilic modification can reduce the overpotential of lithium nucleation on metallic copper, effectively stabilizing the lithium deposition behavior. This paper introduces the current research status of porous copper as anode collector for lithium metal batteries and its preparation method of lithophilic modification of copper foil, analyzes the lithium storage mechanism of porous copper and the advantages of lithophilic modification, looks forward to the application prospect of porous copper collector, and points out the problems existing in the current research.
Key words:  porous copper current collector    dealloying    lithophilic modification    lithium metal battery
出版日期:  2025-08-25      发布日期:  2025-08-15
ZTFLH:  TG146.11  
基金资助: 宜春市重大科技项目(2023ZDJCYJ02);江西省教育厅科技计划(GJJ2200818)
通讯作者:  李勇,博士,江西理工大学材料科学与工程学院副教授、硕士研究生导师。赣州市委直接联系专家,美国路易斯安那州立大学访问学者,江西理工大学第二批清江拔尖人才。目前主要从事锂离子电池负极材料及金属基复合材料的研究工作。liyong0248@163.com   
作者简介:  肖思琪,江西理工大学材料科学与工程学院硕士研究生,在李勇副教授的指导下进行研究。目前主要研究领域为多孔铜箔在锂金属电池负极材料中的应用。
引用本文:    
肖思琪, 李勇, 刘子梁, 梁淑贞, 刘玉峰. 锂金属电池负极集流体用多孔铜箔的研究进展[J]. 材料导报, 2025, 39(16): 24060208-8.
XIAO Siqi, LI Yong, LIU Ziliang, LIANG Shuzhen, LIU Yufeng. Research Progress of Porous Copper Foil for Negative Current Collector in Lithium Metal Batteries. Materials Reports, 2025, 39(16): 24060208-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060208  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24060208
1 Wang J, Huang W, Pei A, et al. Nature Energy, 2019, 4(8), 664.
2 Lin D, Liu Y, Cui Y. Nature Nanotechnology, 2017, 12(3), 194.
3 Chen J, Zhao J, Lei L, et al. Nano Letters, 2020, 20(5), 3403.
4 Cheng X B, Zhang R, Zhao C Z, et al. Chemical Reviews, 2017, 117(15), 10403.
5 Peled E, Menkin S. Journal of the Electrochemical Society, 2017, 164(7), A1703.
6 Cui S, Zhai P, Yang W, et al. Small, 2020, 16(5), 1905620.
7 Zhou M, Lyu Y, Liu Y, et al. Journal of Alloys and Compounds, 2019, 791, 364.
8 Zhou H P, Zhang H, Wang H M, et al. Journal of Alloys and Compounds, 2023, 935, 168081.
9 Dong Q, Wang M, Huang X, et al. Electrochimica Acta, 2023, 442, 141914.
10 Chen C, Liang Q, Wang G, et al. Advanced Functional Materials, 2022, 32(4), 2107249.
11 Li M, Chen C, Luo H, et al. Journal of Materials Chemistry A, 2024, 12(17), 10072.
12 Lin Z, Guo X, Yang Y, et al. Journal of Energy Chemistry, 2021, 52, 67.
13 Zhang J G, Xu W, Xiao J, et al. Chemical Reviews, 2020, 120(24), 13312.
14 Li W, Zheng S, Gao Y, et al. Nano Letters, 2023, 23(17), 7805.
15 Chen J, Li S, Qiao X, et al. Small, 2021, 18(6), 2105999.
16 Yun Q, He Y B, Lv W, et al. Advanced Materials, 2016, 28(32), 6932.
17 Kaboli S, Zhu W, Clément D, et al. ACS Applied Energy Materials, 2023, 6(8), 4257.
18 Wang S H, Yin Y X, Zuo T T, et al. Advanced Materials, 2017, 29(40), 1703729.
19 An Y, Tian Y, Wei C, et al. Nano Today, 2021, 37, 101094.
20 Xu Y, Yu B, Wang Y, et al. Electrochimica Acta, 2022, 435, 141337.
21 Zhou B, Bonakdarpour A, Stoševski I, et al. Progress in Materials Science, 2022, 130, 100996.
22 Li H Y, Lu A K, Wang S S. Journal of Alloys and Compounds, 2022, 921, 165995.
23 Zhao H, Lei D, He Y B, et al. Advanced Energy Materials, 2018, 8(19), 1800266.
24 Luan C, Chen L, Li B, et al. ACS Applied Energy Materials, 2021, 4(12), 13903.
25 Yang C P, Yin Y X, Zhang S F, et al. Nature Communications, 2015, 6(1), 8058.
26 Han J, Li C, Lu Z, et al. Acta Materialia, 2019, 163, 161.
27 Xu Y Z. Fabrication of three-dimensional porous copper current collectorvia dealloying and investigation on stabilizing lithium metal anode. Master's Thesis, Shandong University, China, 2021 (in Chinese).
许岩昭. 三维多孔铜集流体的脱合金制备及稳定锂金属负极的研究. 硕士学位论文, 山东大学, 2021.
28 An Y, Fei H, Zeng G, et al. Nano Energy, 2018, 47, 503.
29 Yu S, Guo W, Huang R H, et al. Foundry, 2024, 73(3), 321(in Chinese).
余圣, 郭威, 黄润华, 等. 铸造, 2024, 73(3), 321.
30 Lu D J, Wan X Q, Mou J J, et al. Chinese Journal of Engineering, 2024, 46(2), 239(in Chinese).
路笃江, 万修芹, 牟津津, 等. 工程科学学报, 2024, 46(2), 239.
31 Shi Y J. Fabrication and structure regulation of nanoporous metals via li-quid/vapor metal-assisted alloying-dealloying. Ph. D. Thesis, Shandong University, China, 2023 (in Chinese).
石玉君. 纳米多孔金属的液/气相合金化-脱合金制备及结构调控. 博士学位论文, 山东大学, 2023.
32 Zhang S P. Structural design of three-dimensional Cu-based current collector and stable deposition behavior of Li metal. Ph. D Thesis, University of Chinese Academy of Sciences, China, 2023 (in Chinese).
张世鹏. 三维铜基集流体的结构化设计及稳定锂金属沉积行为的研究. 博士学位论文, 中国科学院大学, 2023.
33 Lin H, Zhang Z, Wang Y, et al. Advanced Functional Materials, 2021, 31(30), 2102735.
34 Ke X, Cheng Y, Liu J, et al. ACS Applied Materials & Interfaces, 2018, 10(16), 13552.
35 Zhang Y, Li L, Zhao Y G. Electroplating & Finishing, 2018, 37(16), 5(in Chinese).
张岩, 李丽, 赵玉刚. 电镀与涂饰, 2018, 37(16), 5.
36 Jia Y P, Sun W C, Bai Z B, et al. Journal of the Electrochemical Society, 2023, 170(8), 083509.
37 Lei L N. Construction of novel porous copper current collector and study on stabilization of lithium metal anode. Master's Thesis, University of Post and Telecommunications, China, 2021 (in Chinese).
雷琳娜. 新型多孔铜集流体的构建及稳定锂金属负极的研究. 硕士学位论文, 南京邮电大学, 2021.
38 Fan H, Dong Q, Gao C, et al. Materials Letters, 2019, 234, 69.
39 Li Q, Mei X, Sun X, et al. Journal of Energy Storage, 2023, 62, 106915.
40 Lim G J H, Lyu Z, Zhang X, et al. Journal of Materials Chemistry A, 2020, 8(18), 9058.
41 Lee G, Ha J, Lee J, et al. Journal of Materials Chemistry A, 2023, 11(12), 6144.
42 Leng J, Liang H, Wang H, et al. Nano Energy, 2022, 101, 107603.
43 Yan K, Lu Z, Lee H W, et al. Nature Energy, 2016, 1(3), 16010.
44 Liu S, Zhang X, Li R, et al. Energy Storage Materials, 2018, 14, 143.
45 Wang X, He Y, Tu S, et al. Energy Storage Materials, 2022, 49, 135.
46 Wang G, Xiong X, Zou P, et al. Chemical Engineering Journal, 2019, 378, 122243.
47 Zou P, Chiang S W, Li J, et al. Energy Storage Materials, 2019, 18, 155.
48 Zhang Z, Xu X, Wang S, et al. ACS Applied Materials & Interfaces, 2016, 8(40), 26801.
49 Dong Q, Zhang W, Gao M, et al. Chemical Engineering Journal, 2023, 471, 144483.
50 Zhang X Q, Chen X, Xu R, et al. Angewandte Chemie International Edition, 2017, 56(45), 14207.
[1] 杨亚苹, 李艳辉, 张伟. 脱合金化法制备纳米多孔铂合金的研究进展[J]. 材料导报, 2023, 37(3): 21020061-7.
[2] 姚诗言, 曾立艳, 刘军. 高性能锂金属电池负极结构设计及界面强化研究进展[J]. 材料导报, 2022, 36(16): 21010216-11.
[3] 吴苗苗, 于虎, 王咏琪, 窦睿然, 胡泊, 朱爽秋, 马向东. 锂金属电极与LiCl界面相互作用的第一性原理研究[J]. 材料导报, 2022, 36(12): 21030181-5.
[4] 周琦, 任向荣. 脱合金化制备纳米多孔Ni、NiO阳极材料及其电催化析氧性能[J]. 材料导报, 2019, 33(22): 3701-3707.
[5] 郑继波, 李雪, 卢公昊, 宁佳林, 黎曦宁. 脱合金法制备Fe基纳米多孔材料及其催化性能[J]. 材料导报, 2018, 32(16): 2828-2831.
[6] 郭林凯, 王 磊, 章 青. 纳米多孔金属力学性能的若干研究进展[J]. 材料导报, 2017, 31(1): 97-102.
[1] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[4] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
[5] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[6] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[7] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[8] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] CUI Wei, SONG Rixuan, XIAO Zhongmin, FENG Ziming, LENG Decheng, DONG Kangxing, ZHANG Qiang, YANG Zhijun. Multi-field Coupling Numerical Simulation Method for Interference Effect of Double Cracks in X80 Oil and Gas Pipeline Weld[J]. Materials Reports, 2020, 34(2): 2131 -2136 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed