Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24050133-6    https://doi.org/10.11896/cldb.24050133
  无机非金属及其复合材料 |
磷石膏建筑材料CO2排放评价
胡良灿1, 李晓琴1,*, 刘宇航1, 陈建飞2
1 昆明理工大学建筑工程学院,昆明 650000
2 南方科技大学海洋科学与工程系,广东 深圳 518055
CO2 Emission Evaluation for Phosphogypsum Building Materials
HU Liangcan1, LI Xiaoqin1,*, LIU Yuhang1, CHEN Jianfei2
1 Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650000, China
2 Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
下载:  全 文 ( PDF ) ( 5963KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以建筑P&C过程为系统边界,完成了系统边界内磷石膏建筑材料生产各阶段的能耗及CO2来源调查。提出了不同加工方式下生产的胶凝材料建筑用磷石膏粉的碳足迹计算模型,并核算了不同加工方式下建筑用磷石膏粉的碳排放因子。基于此进一步提出了磷石膏混合水泥混凝土的碳足迹计算模型,完成了磷石膏空心砌块、磷石膏混合水泥混凝土等磷石膏建材的碳排因子核算。并进一步计算和对比分析了典型结构的原构筑方案和采用磷石膏绿色建材代替水泥基建材的新构筑方案下的建筑CO2排放量。结果表明在建筑中使用磷石膏砌块等其他磷石膏建材代替混凝土建材减碳效果显著,最高可减少26%的CO2排放量,且用于建材生产的建筑用磷石膏粉的加工方式对整体减碳效果有显著影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡良灿
李晓琴
刘宇航
陈建飞
关键词:  磷石膏  绿色建材  P&C过程  能源消耗  CO2排放    
Abstract: The energy consumption and CO2 footprints of phosphogypsum building materials at different production stages during the P&C process of building structures were investigated. Then a carbon footprint calculation model for phosphorus calcined gypsum powder was proposed. The carbon emission factors for phosphorus calcined gypsum powders produced by different processing methods were determined. A carbon footprint model for phosphogypsum-mixed cement concrete was further developed and the carbon emission factors were calculated for phosphogypsum building materials such as hollowed phosphogypsum blocks and phosphogypsum-mixed cement concrete. The CO2 emissions of typical structures and alternative designs with cement-based materials partially replaced by green phosphogypsum materials were calculated. The results showed that up to 26% carbon emission reduction could be achieved by replacing the cement based concrete with phosphogypsum materials such as phosphogypsum blocks. It was also shown that the CO2 emission of phosphorus calcined gypsum powder was strongly affected by the processing method.
Key words:  phosphogypsum    green building material    P&C process    energy consumption    CO2 emission
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TU526  
基金资助: 国家自然科学基金(52168029);云南省万人计划青年拔尖人才项目(云人社通[2020]150号YNWR-QNBJ-2020-049)
通讯作者:  李晓琴,博士,昆明理工大学教授、博士研究生导师。主要研究方向为新型土木工程材料的研发与应用、既有结构评价与加固修复。xiaoqin.li@foxmail.com   
作者简介:  胡良灿,昆明理工大学硕士研究生,主要研究方向为新型建筑材料在土木工程中的应用。
引用本文:    
胡良灿, 李晓琴, 刘宇航, 陈建飞. 磷石膏建筑材料CO2排放评价[J]. 材料导报, 2025, 39(16): 24050133-6.
HU Liangcan, LI Xiaoqin, LIU Yuhang, CHEN Jianfei. CO2 Emission Evaluation for Phosphogypsum Building Materials. Materials Reports, 2025, 39(16): 24050133-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050133  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24050133
1 Ministry of Finance of the People’s Republic of China, Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Basic requirements for government procurement of green buildings and green building materials (trial), Information Network Center of the Ministry of Finance of the People’s Republic of China, China, 2020 (in Chinese).
中华人民共和国财政部, 中华人民共和国住房和城乡建设部. 绿色建筑和绿色建材政府采购基本要求(试行), 中华人民共和国财政部信息网络中心, 2020.
2 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. General code for energy efficiency and renewable energy application in buildings:GB 55015-2021, China Architecture & Building Press, China, 2021(in Chinese).
中华人民共和国住房和城乡建设部. 建筑节能与可再生能源利用通用规范:GB 55015-2021, 中国建筑工业出版社, 2021.
3 Guo X L, Li Y X, Yuan S T. Journal of Building Materials, 2023, 26(6), 660 (in Chinese).
郭晓潞, 李寅雪, 袁淑婷. 建筑材料学报, 2023, 26(6), 660.
4 Jiang Z W, Gao W B, Yang Q, et al. Journal of Building Materials, 2023, 26(11), 1143(in Chinese).
蒋正武, 高文斌, 杨巧, 等. 建筑材料学报, 2023, 26(11), 1143.
5 Zheng Y L, Ji S, Lu C H, et al. Acta Materiae Compositae Sinica, 2024, 41(3), 1436(in Chinese).
郑玉龙, 嵇帅, 陆春华, 等. 复合材料学报, 2024, 41(3), 1436.
6 Tayibi H, Choura M, Lopez F A, et al. Journal of Environmental Ma-nagement, 2009, 90(8), 2377.
7 Altun A, Sert Y. Cement and Concrete Research, 2004, 34(4), 677.
8 Liu S, Fang P, Ren J, et al. Journal of Cleaner Production, 2020, 272, 122660.
9 Liu D, Wang C, Mei X, et al. Environmental Science and Pollution Research, 2019, 26(29), 30533.
10 Srinivasulu K, Raghava P. International Journal of Engineering Research, 2017, 5(2), 43.
11 Huang H R, Liao Y S, Jiang G X, et al. Journal of Building Materials, 2022, 25(9), 893(in Chinese).
黄浩然, 廖宜顺, 江国喜, 等. 建筑材料学报, 2022, 25(9), 893.
12 ISO. Environmental management:life cycle assessment:principles and framework:ISO 14040:2006, 2006.
13 You F, Hu D, Zhang H, et al. Ecological Complexity, 2011, 8(2), 201.
14 Yang X, Hu M, Wu J, et al. Journal of Cleaner Production, 2018, 183, 729.
15 Li H, Deng Q, Zhang J, et al. Journal of Cleaner Production, 2019, 210, 1496.
16 Zhang X, Wang F. Energy and Buildings, 2016, 130, 330.
17 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for building carbon emission calculation:GB/T 51366-2019, China Architecture & Building Press, China, 2019(in Chinese).
中华人民共和国住房和城乡建设部. 建筑碳排放计算标准:GB/T 51366-2019, 中国建筑工业出版社, 2019.
18 https://www. efootprint. net.
19 https://ecoinvent. org/the-ecoinvent-database/.
20 Information Center of the Ministry of Land and Resources of the People’s Republic of China. World mineral resources annual review 2015, Geology Press, China, 2015, pp. 232(in Chinese).
国土资源部信息中心. 世界矿产资源年评2015, 地质出版社, 2015, pp. 232.
21 Xu J H, Shao L Y, Hou H H, et al. Journal of Mining Science and Technology, 2023, 8(1), 115 (in Chinese).
许金辉, 邵龙义, 侯海海, 等. 矿业科学学报, 2023, 8(1), 115.
22 Peng J H, Wan T Z, Tang L, et al. Journal of Building Materials, 2003(3), 221(in Chinese).
彭家惠, 万体智, 汤玲, 等. 建筑材料学报, 2003(3), 221.
23 Gu Q S, Lin X H, Zhao S H, et al. Inorganic Chemicals Industry, 2022, 54(4), 17(in Chinese).
顾青山, 林喜华, 赵士豪, 等. 无机盐工业, 2022, 54(4), 17.
24 Chen Q H, Jiang Z W. Journal of Building Materials, 2020, 23(1), 200(in Chinese)
陈迁好, 蒋正武. 建筑材料学报, 2020, 23(1), 200.
25 Camarini G, Lima K D D S, Pinheiro S M M. Green Materials, 2016, 3(4), 104.
26 Wu L, Tao Z, Zhao Z, et al. Advances in Civil Engineering, 2022, 2022, 1.
27 Xu X Y, Xu Y Z, Chen G S, et al. Chinese Journal of Rock Mechanics and Engineering, 2004(12), 2096(in Chinese).
徐雪源, 徐玉中, 陈桂松, 等. 岩石力学与工程学报, 2004(12), 2096.
28 张庚福. 中国专利, CN201510041740. 4, 2016.
29 Administration for Market Regulation of Guizhou Province. Phosphogypsum hollow blocks:DB52/T 1038-2015, China, 2015(in Chinese)
贵州省质量技术监督局, 磷石膏空心砌块:DB52/T 1038-2015, 2015.
30 Buhari B M, Raju R. International Journal of Science Technology and Engineering, 2016, 3(3), 9.
31 Deepak S, Ramesh C, Sethuraman R. International Research Journal of Engineering and Technology, 2016, 3(3), 1146.
32 Alam I, Ameen M A, Rehman F. North Asian International Research Journal Consortium, 2015, 1(2), 1.
33 Intergovernmental Panel on Climate Change. 2006 IPCC guidelines for national greenhouse gas inventories, Institute for Global Environmental Stra-tegies, Japan, 2006.
34 Ministry of Ecology and Environment of the People’s Republic of China. Guidelines on corporate greenhouse gas emissions accounting and reporting:power generation facility, China, 2022(in Chinese)
中华人民共和国生态环境部. 企业温室气体排放核算方法与报告指南:发电设施, 2022.
35 Mittal A, Rakshit D. Thermal Science and Engineering Progress, 2020, 20, 100729.
36 胡兆平, 陈宏坤, 姚华龙, 等. 中国专利, CN201510595367. 7, 2017.
37 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Specification for mix proportion design of ordinary concrete:JGJ 55-2011, China Architecture & Building Press, China, 2011(in Chinese)
中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程:JGJ 55-2011, 中国建筑工业出版社, 2011.
38 National Bureau of Statistics. China statistical yearbook on construction, China Statistics Press, China, 2021, pp. 14(in Chinese)
国家统计局. 中国建筑业统计年鉴, 中国统计出版社, 2021, pp. 14.
39 Duan Z, Huang Q, Sun Q, et al. Journal of Building Engineering, 2022, 62, 105357.
[1] 方双明, 付娟, 罗洁, 彭祝, 李子玲, 程金科. 无机碱与季铵盐协同改性磷石膏的抗霉特性及物理力学性能研究[J]. 材料导报, 2025, 39(3): 24010006-8.
[2] 聂松, 周健, 徐名凤, 李辉. 低碳胶凝材料的研究进展[J]. 材料导报, 2024, 38(2): 22050304-9.
[3] 王露, 涂拥军, 高富豪, 刘数华. 改性磷石膏对超硫酸盐水泥水化特性的影响[J]. 材料导报, 2024, 38(14): 22120115-6.
[4] 马梦阳, 贺行洋, 熊光, 李欣懋, 龙勇, 王福龙. 二水磷石膏-电石渣-镍铁渣三元胶凝体系的性能与微观结构[J]. 材料导报, 2024, 38(13): 22080048-5.
[5] 张峻, 解维闵, 董雄波, 杨华明. 磷石膏材料化综合利用研究进展[J]. 材料导报, 2023, 37(16): 22010110-12.
[6] 王嘉昊, 沈玉, 刘娟红, 罗昆. 不同种类缓凝剂对半水磷石膏凝结时间和硬化性能的影响[J]. 材料导报, 2022, 36(Z1): 21120173-5.
[7] 刘猛, 王庆, 朱晨, 顿鹏, 刘勇. 水洗和粉磨预处理前后煅烧磷石膏的性能变化及应用[J]. 材料导报, 2022, 36(Z1): 22020111-5.
[8] 张立力, 华苏东, 诸华军, 顾增欢, 谷重, 赵益河. 高镁镍渣-磷石膏基胶凝材料固化和改良盐渍土的性能[J]. 材料导报, 2020, 34(9): 9034-9040.
[9] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[10] 赵红涛, 王树民, 刘志江, 张曼. 磷石膏矿化固定CO2制备高纯高白CaCO3[J]. 材料导报, 2019, 33(18): 3031-3034.
[11] 栾扬,赵志曼,全思臣,曾众,吴佳丽,梁祎. 基于密度泛函理论研究磷建筑石膏晶体表面吸附丁二酸转晶机理[J]. 《材料导报》期刊社, 2018, 32(12): 2118-2123.
[12] 梁 娇,楚婉怡,黄永波,李凤玲,刘 娜,钱觉时. 预分解磷石膏制备贝利特-硫铝酸盐水泥[J]. 《材料导报》期刊社, 2017, 31(24): 1-5.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed