Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24050191-9    https://doi.org/10.11896/cldb.24050191
  金属与金属基复合材料 |
渗碳体形态提高船体结构钢塑性机理研究
陈作宁1,2, 师仲然1,*, 胡骞2, 王益起2, 罗小兵1
1 钢铁研究总院有限公司工程用钢研究院,北京 100081
2 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
Study on the Mechanism of Cementite Morphology to Improve the Plasticity of Hull Structure Steel
CHEN Zuoning1,2, SHI Zhongran1,*, HU Qian2, WANG Yiqi2, LUO Xiaobing1
1 Engineering Steel Research Institute, Central Iron and Steel Research Institute Co., Ltd., Beijing 100081, China
2 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 58635KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 结合金相电镜(OM)、扫描电子显微镜(SEM)、透射电镜(TEM)和三维原子探针(APT)等实验方法观察并分析了试验钢微观组织、冲击断口形貌、裂纹扩展路径和拉伸断口孔隙分布情况等,定量统计了不同回火温度下渗碳体球化率和尺寸变化规律,着重分析了试验钢渗碳体形态演变对塑性的影响规律。研究结果表明:当回火温度从500 ℃升高到650 ℃时,试验钢的抗拉强度、屈服强度和-40 ℃冲击功均呈小幅下降趋势,延伸率先升高再降低。当回火温度为600 ℃时,渗碳体可以充分球化,形成一种球化的渗碳体+铁素体的微合金化高塑性船体钢,其抗拉强度为567 MPa,屈服强度为467 MPa,延伸率达到最大值32.5%,-40 ℃冲击功为209 J,具有最佳的强韧塑性匹配。经回火后,试验钢渗碳体形态由层片状逐渐转化为球状,随着回火温度升高,渗碳体球化率增加,球化的渗碳体尺寸先降低后略微增加,细小弥散的球状渗碳体颗粒使界面处的应力集中降低;试验钢在拉伸或者冲击载荷作用下,渗碳体作为裂纹形成位置,回火态试验钢临界裂纹尺寸显著降低,另外球状渗碳体颗粒周围的孔隙更难聚结形成裂纹,从而导致试验钢-40 ℃冲击功及延伸率增大。经回火热处理后,试验钢会继续析出小尺寸的NbC粒子,这些析出相粒子能够产生一定的析出强化效果,是试验钢回火后屈服强度升高的原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈作宁
师仲然
胡骞
王益起
罗小兵
关键词:  高塑性船体钢  回火温度  渗碳体球化  延伸率  3D APT    
Abstract: This study integrates optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and three-dimensional atomic probe microscopy (APT) to examine and characterize the microstructure, impact fracture morphology, crack propagation paths, and the distribution of tensile fracture porosity within the test steels. A quantitative evaluation of the spheroidization rate and size variation of cementite at different tempering temperatures is carried out. Additionally, considerable attention is given to the influence of evolving cementite morphology on plasticity. The results show that:As the tempering temperature increases from 500 ℃ to 650 ℃, the tensile strength, yield strength, and impact energy at -40 ℃ of the test steels exhibit a slight decrease. Elongation shows an initial increase followed by a decrease. At 600 ℃, cementite undergoes complete spheroidization, leading to the formation of a microstructure consisting of spheroidized cementite and ferrite, resulting in a high-plasticity hull steel with a tensile strength of 567 MPa, a yield strength of 467 MPa, and a maximum elongation of 32.5%, coupled with an impact energy at -40 ℃ of 209 J. This tempering condition offers the optimal balance of toughness and plasticity. After tempering, the morphology of cementite in the test steels evolves from lamellar to spherical. As the tempering temperature rises, the rate of cementite spheroidization increases and the size of spheroidized cementite particles initially decreases before slightly increasing. The presence of finely dispersed spherical cementite particles lessens stress concentration at the interface. Under tensile or impact loading, cementite acts as a crack initiation site, significantly reducing the critical crack size in tempered test steels. Moreover, the pores surrounding spherical cementite particles are less prone to agglomeration and crack formation, contributing to an increase in impact energy and elongation at -40 ℃ for the test steels. After tempering, the test steels undergo continued precipitation of small NbC particles, which contribute to a certain degree of precipitation strengthening and explain the increase in yield strength of the test steels post-tempering.
Key words:  high plasticity ship hull steel    tempering temperature    carbide spheroidization    elongation    3D APT
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TG142.1+1  
基金资助: 钢铁研究总院自主投入基金重大项目(事23G60320ZD)
通讯作者:  * 师仲然,博士,钢铁研究总院工程用钢研究院高级工程师。主要从事海洋工程用钢、低温船板钢、大线能量焊接用钢、极地环境用钢等方面的研究。18001263520@126.com   
作者简介:  陈作宁,硕士,主要研究领域为抗碰撞船板钢。
引用本文:    
陈作宁, 师仲然, 胡骞, 王益起, 罗小兵. 渗碳体形态提高船体结构钢塑性机理研究[J]. 材料导报, 2025, 39(14): 24050191-9.
CHEN Zuoning, SHI Zhongran, HU Qian, WANG Yiqi, LUO Xiaobing. Study on the Mechanism of Cementite Morphology to Improve the Plasticity of Hull Structure Steel. Materials Reports, 2025, 39(14): 24050191-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050191  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24050191
1 Peng J, Zhou B, Li Z, et al. Journal of Materials Research and Technology, 2023, 23, 5618.
2 Yang C F. Proceedings of the 13th China Steel Annual Conference of the Chinese Metallurgical Society (Abstract)-invited report of the conference & invited report from the branch venue, Metallurgical Industry Press, China, 2022, pp. 105.
杨才福. 第十三届中国钢铁年会论文集(摘要)-大会特邀报告 & 分会场特邀报告, 冶金工业出版社, 2022, pp. 105.
3 Yamada Y, Tozawa S. Arima T, et al. Proceedings of ICCGS, 2016, 15 (18).
4 Okawa T, Ichikawa K, Shimanuki H, et al. Verification of crashworthiness of highly ductile steel largescale model tests, CRC press, USA, 2019, pp. 34.
5 Sun H, Xing S, Zhao B, et al. Materials Today Communications, 2022, 33.
6 Liu Z, Qiu D, Wang F, et al. Metallurgical and Materials Transactions, 2016, 47(2), 830.
7 Hosseini S, Alishahi M, Najafizadeh A, et al. Materials Letters, 2012, 74, 206.
8 Chen W, Li L F, Yang W Y, et al. Acta Metallurgica Sinica, 2009, 45(2), 151(in Chinese).
陈伟, 李龙飞, 杨王玥, 等. 金属学报, 2009, 45(2), 151.
9 Tian Y, Kraft R. Metallurgical Transactions A, 1987, 18, 1403.
10 Shin D H, Han S Y, Park K T, et al. Materials Transactions, 2003, 44(8), 1630.
11 Guo T Y, Luo X B, Xiang Z C, et al. Materials Science and Technology, 2024, 32(3), 10(in Chinese).
郭天阳, 罗小兵, 项重辰, 等. 材料科学与工艺, 2024, 32(3), 10.
12 Chen W, Li L F, Yang W Y, et al. Acta Metallurgica Sinica, 2009, 45(2), 156(in Chinese).
陈伟, 李龙飞, 杨王玥, 等. 金属学报, 2009, 45(2), 156.
13 Chai F, Wang Z M, Luo X B, et al. Materials Reports, 2022, 36 (11), 165(in Chinese).
柴锋, 王泽民, 罗小兵, 等. 材料导报, 2022, 36(11), 165.
14 Rogozhkin V S, Klauz V A, Ke Y, et al. Nanomaterials, 2024, 14(2), 194.
15 Liu H, Wei J, Dong J, et al. Journal of Materials Research and Technology, 2023, 23, 1618.
16 Liang J, Shen Y, Misra R, et al. Journal of Materials Research and Technology, 2021, 83, 131.
17 Sathirachinda N, Pettersson R, Pan J. Corrosion Science, 2009, 51(8), 1850.
18 Feng L L, Wu K M, Qiao W W, et al. Journal of Iron and Steel Research, 2020, 32(8), 734(in Chinese).
冯路路, 吴开明, 乔文玮, 等. 钢铁研究学报, 2020, 32(8), 734.
19 Schastlivtsev V M, Yakovleva I L, Kar K LE I, et al. Doklady Physics, 2002, 47(6), 451.
20 Arruabarrena J, López B, Rodriguez-Ibabe M J. Metallurgical and Materials Transactions, 2016, 47(1), 412.
21 Wang Y T, Adachi Y, Nakajim K, et al. Acta Metallurgica, 2010, 58, 4849.
22 Kubendran A P G, Bhattacharya A, Nestler B, et al. Acta Metallurgica, 2018, 161, 400.
23 Feng Z M, Yang W Y. Journal of Beijing University of Science and Technology, 2007(7), 689(in Chinese).
冯志明, 杨王玥. 北京科技大学学报, 2007(7), 689.
24 Ogawa T, Dannoshita H, Adachi Y. AIMS Materials Science, 2019, 6, 798.
25 Zheng C, Li L, Yang W, et al. Materials Science Engineering A, 2014, 6(17), 31.
26 Hamshini R, Tripathy B, Paul S, et al. Metallurgical and Materials Transactions, 2023, 54(4), 1199.
27 Jie J S, Liang F L, Ji H L, et al. Materials Characterization, 2014, 95, 291.
28 Zhang H M, Huo M S, Ma Z Q, et al. Metals, 2022, 12(6), 914.
29 Nam J W, Song R H, Park T K. Solid State Phenomena, 2006, 690(118-118), 31.
30 Hu X, Bao S Q, Cai Z, et al. Journal of Iron and Steel Research, 2018, 30(8), 657(in Chinese).
胡晓, 鲍思前, 蔡珍, 等. 钢铁研究学报, 2018, 30(8), 657.
31 Miyamoto G, Karube Y, Furuhara T. Acta Materialia, 2016, 10(3), 370.
[1] 万里, 刘荣超, 邓运来, 唐建国, 张勇. 时效工艺对汽车用6061铝合金型材压溃性能的影响[J]. 材料导报, 2021, 35(8): 8099-8102.
[2] 张度宝, 李成涛, 方可伟, 罗坤杰, 王力, 武焕春, 薛飞. 回火温度对42CrMo4高强钢力学性能及应力腐蚀敏感性的影响[J]. 材料导报, 2021, 35(16): 16133-16137.
[3] 江旭, 马煜林, 刘越. 回火温度对CB2钢的含硼M23C6相析出及力学性能的影响[J]. 材料导报, 2019, 33(12): 2062-2066.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed