Study on the Mechanism of Cementite Morphology to Improve the Plasticity of Hull Structure Steel
CHEN Zuoning1,2, SHI Zhongran1,*, HU Qian2, WANG Yiqi2, LUO Xiaobing1
1 Engineering Steel Research Institute, Central Iron and Steel Research Institute Co., Ltd., Beijing 100081, China 2 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Abstract: This study integrates optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and three-dimensional atomic probe microscopy (APT) to examine and characterize the microstructure, impact fracture morphology, crack propagation paths, and the distribution of tensile fracture porosity within the test steels. A quantitative evaluation of the spheroidization rate and size variation of cementite at different tempering temperatures is carried out. Additionally, considerable attention is given to the influence of evolving cementite morphology on plasticity. The results show that:As the tempering temperature increases from 500 ℃ to 650 ℃, the tensile strength, yield strength, and impact energy at -40 ℃ of the test steels exhibit a slight decrease. Elongation shows an initial increase followed by a decrease. At 600 ℃, cementite undergoes complete spheroidization, leading to the formation of a microstructure consisting of spheroidized cementite and ferrite, resulting in a high-plasticity hull steel with a tensile strength of 567 MPa, a yield strength of 467 MPa, and a maximum elongation of 32.5%, coupled with an impact energy at -40 ℃ of 209 J. This tempering condition offers the optimal balance of toughness and plasticity. After tempering, the morphology of cementite in the test steels evolves from lamellar to spherical. As the tempering temperature rises, the rate of cementite spheroidization increases and the size of spheroidized cementite particles initially decreases before slightly increasing. The presence of finely dispersed spherical cementite particles lessens stress concentration at the interface. Under tensile or impact loading, cementite acts as a crack initiation site, significantly reducing the critical crack size in tempered test steels. Moreover, the pores surrounding spherical cementite particles are less prone to agglomeration and crack formation, contributing to an increase in impact energy and elongation at -40 ℃ for the test steels. After tempering, the test steels undergo continued precipitation of small NbC particles, which contribute to a certain degree of precipitation strengthening and explain the increase in yield strength of the test steels post-tempering.
陈作宁, 师仲然, 胡骞, 王益起, 罗小兵. 渗碳体形态提高船体结构钢塑性机理研究[J]. 材料导报, 2025, 39(14): 24050191-9.
CHEN Zuoning, SHI Zhongran, HU Qian, WANG Yiqi, LUO Xiaobing. Study on the Mechanism of Cementite Morphology to Improve the Plasticity of Hull Structure Steel. Materials Reports, 2025, 39(14): 24050191-9.
1 Peng J, Zhou B, Li Z, et al. Journal of Materials Research and Technology, 2023, 23, 5618. 2 Yang C F. Proceedings of the 13th China Steel Annual Conference of the Chinese Metallurgical Society (Abstract)-invited report of the conference & invited report from the branch venue, Metallurgical Industry Press, China, 2022, pp. 105. 杨才福. 第十三届中国钢铁年会论文集(摘要)-大会特邀报告 & 分会场特邀报告, 冶金工业出版社, 2022, pp. 105. 3 Yamada Y, Tozawa S. Arima T, et al. Proceedings of ICCGS, 2016, 15 (18). 4 Okawa T, Ichikawa K, Shimanuki H, et al. Verification of crashworthiness of highly ductile steel largescale model tests, CRC press, USA, 2019, pp. 34. 5 Sun H, Xing S, Zhao B, et al. Materials Today Communications, 2022, 33. 6 Liu Z, Qiu D, Wang F, et al. Metallurgical and Materials Transactions, 2016, 47(2), 830. 7 Hosseini S, Alishahi M, Najafizadeh A, et al. Materials Letters, 2012, 74, 206. 8 Chen W, Li L F, Yang W Y, et al. Acta Metallurgica Sinica, 2009, 45(2), 151(in Chinese). 陈伟, 李龙飞, 杨王玥, 等. 金属学报, 2009, 45(2), 151. 9 Tian Y, Kraft R. Metallurgical Transactions A, 1987, 18, 1403. 10 Shin D H, Han S Y, Park K T, et al. Materials Transactions, 2003, 44(8), 1630. 11 Guo T Y, Luo X B, Xiang Z C, et al. Materials Science and Technology, 2024, 32(3), 10(in Chinese). 郭天阳, 罗小兵, 项重辰, 等. 材料科学与工艺, 2024, 32(3), 10. 12 Chen W, Li L F, Yang W Y, et al. Acta Metallurgica Sinica, 2009, 45(2), 156(in Chinese). 陈伟, 李龙飞, 杨王玥, 等. 金属学报, 2009, 45(2), 156. 13 Chai F, Wang Z M, Luo X B, et al. Materials Reports, 2022, 36 (11), 165(in Chinese). 柴锋, 王泽民, 罗小兵, 等. 材料导报, 2022, 36(11), 165. 14 Rogozhkin V S, Klauz V A, Ke Y, et al. Nanomaterials, 2024, 14(2), 194. 15 Liu H, Wei J, Dong J, et al. Journal of Materials Research and Technology, 2023, 23, 1618. 16 Liang J, Shen Y, Misra R, et al. Journal of Materials Research and Technology, 2021, 83, 131. 17 Sathirachinda N, Pettersson R, Pan J. Corrosion Science, 2009, 51(8), 1850. 18 Feng L L, Wu K M, Qiao W W, et al. Journal of Iron and Steel Research, 2020, 32(8), 734(in Chinese). 冯路路, 吴开明, 乔文玮, 等. 钢铁研究学报, 2020, 32(8), 734. 19 Schastlivtsev V M, Yakovleva I L, Kar K LE I, et al. Doklady Physics, 2002, 47(6), 451. 20 Arruabarrena J, López B, Rodriguez-Ibabe M J. Metallurgical and Materials Transactions, 2016, 47(1), 412. 21 Wang Y T, Adachi Y, Nakajim K, et al. Acta Metallurgica, 2010, 58, 4849. 22 Kubendran A P G, Bhattacharya A, Nestler B, et al. Acta Metallurgica, 2018, 161, 400. 23 Feng Z M, Yang W Y. Journal of Beijing University of Science and Technology, 2007(7), 689(in Chinese). 冯志明, 杨王玥. 北京科技大学学报, 2007(7), 689. 24 Ogawa T, Dannoshita H, Adachi Y. AIMS Materials Science, 2019, 6, 798. 25 Zheng C, Li L, Yang W, et al. Materials Science Engineering A, 2014, 6(17), 31. 26 Hamshini R, Tripathy B, Paul S, et al. Metallurgical and Materials Transactions, 2023, 54(4), 1199. 27 Jie J S, Liang F L, Ji H L, et al. Materials Characterization, 2014, 95, 291. 28 Zhang H M, Huo M S, Ma Z Q, et al. Metals, 2022, 12(6), 914. 29 Nam J W, Song R H, Park T K. Solid State Phenomena, 2006, 690(118-118), 31. 30 Hu X, Bao S Q, Cai Z, et al. Journal of Iron and Steel Research, 2018, 30(8), 657(in Chinese). 胡晓, 鲍思前, 蔡珍, 等. 钢铁研究学报, 2018, 30(8), 657. 31 Miyamoto G, Karube Y, Furuhara T. Acta Materialia, 2016, 10(3), 370.