Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 24100061-12    https://doi.org/10.11896/cldb.24100061
  光热调控超材料的应用与创新 |
基于超构表面的偏振探测器件研究进展
赵相锐1,2,3, 孙飞莹2,3, 彭阳2,3, 娄泰铭1,2,3, 张先宁1,2,3, 张洪尘1,2,3, 魏兴战2,3,*
1 重庆邮电大学光电工程学院, 重庆 400065
2 中国科学院重庆绿色智能技术研究院, 微纳制造与系统集成研究中心, 重庆 400714
3 中国科学院大学重庆学院, 智能制造学院, 重庆 400714
Advances in Polarization Detectors Based on Metasurfaces
ZHAO Xiangrui1,2,3, SUN Feiying2,3, PENG Yang2,3, LOU Taiming1,2,3, ZHANG Xianning1,2,3, ZHANG Hongchen1,2,3, WEI Xingzhan2,3,*
1 School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2 Micro-and Nano-Fabrication and System Integration Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
3 School of Intelligent Manufacturing, Chongqing School, University of Chinese Academy Sciences, Chongqing 400714, China
下载:  全 文 ( PDF ) ( 30079KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 偏振探测技术作为一种重要的光学探测手段,具有强抗干扰能力,并能有效提升探测距离,在光学遥感、环境监测、生物医学和水下成像等领域展现出重要的应用价值。传统偏振探测系统存在体积庞大、光路复杂等问题,在小型化和集成化方面存在严峻挑战。超构表面是由人工亚波长结构单元组成的二维周期性阵列,可根据入射光偏振态对光场进行精细调控,有效降低偏振探测系统的尺寸,提升器件的集成程度,为小型化偏振探测提供了全新的解决方案。本文分析超构表面与偏振探测相关的光场调控机理,在此基础上归纳基于超构表面的光子型与光热型偏振探测器件,并对现存问题与未来趋势进行总结与展望,以期为该领域的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵相锐
孙飞莹
彭阳
娄泰铭
张先宁
张洪尘
魏兴战
关键词:  超构表面  光场调控  偏振探测    
Abstract: Polarization detection technology is a vital optical sensing method characterized by its strong anti-interference capabilities and its effectiveness in enhancing detection range. It plays a significant role in various fields, including optical remote sensing, environmental monitoring, biomedicine, and underwater imaging. However, traditional polarization detection systems encounter challenges, such as bulky size and complex optical paths, which create substantial obstacles for miniaturization and integration. Metasurfaces, comprised of two-dimensional periodic arrays of artificially subwavelength elements, enable precise manipulation of optical fields according to the polarization states of incident light. This capability effectively reduces the size of polarization detection systems while enhancing device integration, offering innovative solutions for miniaturized polarization detection. This review analyzes the optical field manipulation mechanisms related to polarization detection and summarizes photon and photothermal polarization detectors based on metasurfaces. Additionally, it discusses existing challenges and future trends, aiming to provide valuable insights for further research in this field.
Key words:  metasurfaces    optical field modulation    polarization detection
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TN215  
基金资助: 重庆市自然科学基金(CSTB2023NSCQ-LZX0087)
通讯作者:  *魏兴战,博士,中国科学院重庆绿色智能技术研究院研究员、博士研究生导师。长期从事光电材料与光电探测器件研究。weixingzhan@cigit.ac.cn   
作者简介:  赵相锐,现为重庆邮电大学光电工程学院和中国科学院重庆绿色智能技术研究院联合培养硕士研究生,主要研究方向为超构表面多功能光电探测器件。
引用本文:    
赵相锐, 孙飞莹, 彭阳, 娄泰铭, 张先宁, 张洪尘, 魏兴战. 基于超构表面的偏振探测器件研究进展[J]. 材料导报, 2025, 39(1): 24100061-12.
ZHAO Xiangrui, SUN Feiying, PENG Yang, LOU Taiming, ZHANG Xianning, ZHANG Hongchen, WEI Xingzhan. Advances in Polarization Detectors Based on Metasurfaces. Materials Reports, 2025, 39(1): 24100061-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100061  或          https://www.mater-rep.com/CN/Y2025/V39/I1/24100061
1 Zhou X, Qiu C, Sun J, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 254, 107182.
2 Omer K, Kupinski M. Optics Express, 2022, 30(14), 25734.
3 Natsume H, Nojiri K, Kajita S, et al. Plasma and Fusion Research, 2022, 17, 2405041.
4 Zhang Y, Sun J, Qiu R, et al. Sensors, 2021, 21(13), 4418.
5 Tyo J S, Goldstein D L, Chenault D B, et al. Applied Optics, 2006, 45(22), 5453.
6 Yan L, Li Y, Chandrasekar V, et al. International Journal of Remote Sensing, 2020, 41(13), 4853.
7 Talmage D A, Curran P J. International Journal of Remote Sensing, 1986, 7(1), 47.
8 Yan L, Wu T, Wang X. Understanding of atmospheric systems with efficient numerical methods for observation and prediction, IntechOpen London, UK, 2018, pp. 165.
9 Zhu Y, Zeng T, Liu K, et al. Optics Express, 2021, 29(25), 41865.
10 Yongqiang Z, Huimin D, Linghao S, et al. Infrared and Laser Engineering, 2020, 49(6), 20190571.
11 Wang H, Hu H, Jiang J, et al. Optics Express, 2021, 29(20), 31283.
12 Yu T, Wang X, Xi S, et al. Optics Express, 2022, 31(1), 459.
13 Reppert S M, Zhu H, White R H. Current Biology, 2004, 14(2), 155.
14 Pomozi I, Horváth G, Wehner R. Journal of Experimental Biology, 2001, 204(17), 2933.
15 Lambrinos D, Möller R, Labhart T, et al. Robotics and Autonomous Systems, 2000, 30(1-2), 39.
16 Brines M L, Gould J L. Journal of Experimental Biology, 1982, 96(1), 69.
17 Ding Z, Liang C, Chen Y. Frontiers of Optoelectronics, 2015, 8, 128.
18 Tuchin V V. Journal of Biomedical Optics, 2016, 21(7), 71114.
19 Polavarapu P L, Chen G, Deng Z. Applied Spectroscopy, 1994, 48(11), 1403.
20 Louie D C, Phillips J, Tchvialeva L, et al. Journal of Biomedical Optics, 2018, 23(12), 125004.
21 De Boer J F, Milner T E. Journal of Biomedical Optics, 2002, 7(3), 359.
22 Wang Y, Su Y, Sun X, et al. Applied Sciences, 2022, 12(13), 6613.
23 Meng X, Li J, Song H, et al. Applied Optics, 2014, 53(24), 5275.
24 Peinado A, Lizana A, Vidal J, et al. Applied Optics, 2011, 50(28), 5437.
25 Liu H, Zhong W, Yun T, et al. Remote sensing image processing, geographic information systems, and other applications, SPIE, 2020, pp. 234.
26 Peinado A, Turpin A, Lizana A, et al. Optics Letters, 2013, 38(20), 4100.
27 Negara C. In: Proceedings of the 2016 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics. Vision and Fusion Laboratory, 2017, pp. 85.
28 Wu Q, Gao L, Cao Y, et al. Photonics Research, 2022, 11(1), 35.
29 Wang Y, Su Y, Sun X, et al. Applied Sciences, 2022, 12(13), 6613.
30 Chen J, Xie H, Yang T, et al. In: Optical Design and Testing XII. SPIE, 2022, pp. 32.
31 Xue Q, Li H, Lu F, et al. Applied Optics, 2024, 63(19), 5107.
32 Iwanaga M. Science and Technology of Advanced Materials, 2012, 13(5), 53002.
33 Hao J, Qiu M, Zhou L. Frontiers of Physics in China, 2010, 5, 291.
34 Oliveri G, Werner D H, Massa A. Proceedings of the IEEE, 2015, 103(7), 1034.
35 Liu W, Li Z, Ansari M A, et al. Advanced Materials, 2023, 35(30), 2208884.
36 Wang J. Chinese Optics Letters, 2018, 16(5), 50006.
37 Hassani Gangaraj S A, Monticone F. Nanophotonics, 2018, 7(6), 1025.
38 Li Y, Lin J, Guo H, et al. Advanced Optical Materials, 2020, 8(6), 1901548.
39 Deng Z, Li G. Materials Today Physics, 2017, 3, 16.
40 Wang S, Wu P C, Su V, et al. Nature Communications, 2017, 8(1), 187.
41 High A A, Devlin R C, Dibos A, et al. Nature, 2015, 522(7555), 192.
42 Fu R, Li Z, Zheng G, et al. Optics Express, 2019, 27(9), 12221.
43 Meinzer N, Barnes W L, Hooper I R. Nature Photonics, 2014, 8(12), 889.
44 Ding F, Wang Z, He S, et al. ACS Nano, 2015, 9(4), 4111.
45 Yang W, Xiao S, Song Q, et al. Nature Communications, 2020, 11(1), 1864.
46 Liang H, Lin Q, Xie X, et al. Nano Letters, 2018, 18(7), 4460.
47 Yoon G, Kim K, Huh D, et al. Nature Communications, 2020, 11(1), 2268.
48 Chen B H, Wu P C, Su V, et al. Nano Letters, 2017, 17(10), 6345.
49 Jiang H, Wei J, Sun F, et al. ACS Nano, 2022, 16(3), 4458.
50 Staude I, Miroshnichenko A E, Decker M, et al. ACS Nano, 2013, 7(9), 7824.
51 Kuznetsov A I, Miroshnichenko A E, Brongersma M L, et al. Science, 2016, 354(6314), 2472.
52 Proust J, Bedu F, Gallas B, et al. ACS Nano, 2016, 10(8), 7761.
53 Pancharatnam S. In: Proceedings of the Indian Academy of Sciences-Section A, Springer India, 1956, pp. 247.
54 Pancharatnam S. In: Proceedings of the Indian Academy of Sciences-Section A, Springer India, 1956, pp. 398.
55 Berry M V. Mathematical and Physical Sciences, 1984, 392(1802), 45.
56 Zhang X, Li X, Jin J, et al. Nanoscale, 2018, 10(19), 9304.
57 Chen J, Hu S, Zhu S, et al. Interdisciplinary Materials, 2023, 2(1), 5.
58 Chen W T, Zhu A Y, Sanjeev V, et al. Nature Nanotechnology, 2018, 13(3), 220.
59 Yu N, Genevet P, Kats M A, et al. Science, 2011, 334(6054), 333.
60 Sun S, Yang K, Wang C, et al. Nano Letters, 2012, 12(12), 6223.
61 Crozier K B, Sundaramurthy A, Kino G S, et al. Journal of Applied Physics, 2003, 94(7), 4632.
62 Hsu L, Baida F I, Ndao A. Optics Express, 2021, 29(2), 1102.
63 Lalanne P, Lemercier-Lalanne D. Journal of Modern Optics, 1996, 43(10), 2063.
64 Zhdanov M. Geophysics, 2008, 73(5), F197.
65 Jin J, Liu S, Lin Z, et al. Physical Review B—Condensed Matter and Materials Physics, 2009, 80(11), 115101.
66 Wang T, Chen G, Zhu J, et al. Journal of Colloid and Interface Science, 2021, 595, 1.
67 Liu T, Caballero J M, Wang Y. Plasmonics, 2024, 19(2), 699.
68 Hou Z, Gao X, Zhang J, et al. Carbon, 2024, 222, 118935.
69 Li M, Wang G, Gao Y, et al. Nanomaterials, 2022, 12(19), 3477.
70 Yan M. Journal of Optics, 2013, 15(2), 25006.
71 Chen C, Wang G, Zhang Z, et al. Optics Letters, 2018, 43(15), 3630.
72 Liu N, Mesch M, Weiss T, et al. Nano Letters, 2010, 10(7), 2342.
73 Hao J, Wang J, Liu X, et al. Applied Physics Letters, 2010, 96(25), 4184.
74 Liu X, Tyler T, Starr T, et al. Physical Review Letters, 2011, 107(4), 45901.
75 Isogun T A, Ni H B. Plasmonics, 2024, 19(2), 663.
76 Nguyen D M, Lee D, Rho J. Scientific Reports, 2017, 7(1), 2611.
77 Yu H, Meng D, Liang Z, et al. Optics Express, 2021, 29(22), 36111.
78 Sekar R, Inabathini S R. Radioengineering, 2018, 27(2), 365.
79 Gruev V, Perkins R, York T. Optics Express, 2010, 18(18), 19087.
80 Afshinmanesh F, White J S, Cai W, et al. Nanophotonics, 2012, 1(2), 125.
81 Zhang J, Guo Z, Li R, et al. Plasmonics, 2015, 10, 1255.
82 Cheng B, Zou Y, Shao H, et al. Optics Express, 2020, 28(19), 27324.
83 Zuo J, Bai J, Choi S, et al. Light: Science & Applications, 2023, 12(1), 218.
84 Jiang H, Fu J, Wei J, et al. Nature Communications, 2024, 15(1), 1225.
85 Wei S, Yang Z, Zhao M. Optics Letters, 2017, 42(8), 1580.
86 Zhang Y, Pu M, Jin J, et al. Opto-Electronic Advances, 2022, 5(11), 220051.
87 Zheng C, Li H, Liu J, et al. Photonics Research, 2024, 12(3), 514.
88 Yang Z, Wang Z, Wang Y, et al. Nature Communications, 2018, 9(1), 4607.
89 Zhang Y, Jin J, Pu M, et al. Physica Status Solidi RRL-Rapid Research Letters, 2020, 14(5), 2000044.
90 Pors A, Nielsen M G, Bozhevolnyi S I. Optica, 2015, 2(8), 716.
91 Shaltout A, Liu J, Kildishev A, et al. Optica, 2015, 2(10), 860.
92 Boroviks S, Acs Photonics, 2017, 5(5), 1648.
93 Ding F, Pors A, Chen Y, et al. ACS Photonics, 2017, 4(4), 943.
94 Khorasaninejad M, Zhu W, Crozier K B. Optica, 2015, 2(4), 376.
95 Khorasaninejad M, Chen W T, Zhu A Y, et al. Nano Letters, 2016, 16(7), 4595.
96 Ren Y, Guo S, Zhu W, et al. Advanced Photonics Research, 2022, 3(7), 2100373.
97 Shah Y D, Dada A C, Grant J P, et al. ACS Photonics, 2022, 9(10), 3245.
98 Liu S, Zhang Z, Cheng J, et al. Photonics, 2023, 10(4), 382.
99 Wei J, Li Y, Wang L, et al. Nature Communications, 2020, 11(1), 6404.
100 Wei J, Chen Y, Li Y, et al. Nature Photonics, 2023, 17(2), 171.
101 Chen M, Wang Y, Zhao Z. ACS Nano, 2022, 16(10), 17263.
102 Wilson N C, Shin E, Bangle R E, et al. Nano Letters, 2023, 23(18), 8547.
103 Jiang S. Multi-modal thermal detectors based on metasurface microbolometers. Ph. D. Thesis, Huazhong University of Science and Techno-logy, China, 2022(in Chinese).
蒋顺. 基于超表面微测辐射热计的多维热探测器研究. 博士学位论文, 华中科技大学, 2022.
104 Seong J, Jeon Y, Yang Y, et al. International Journal of Precision Engineering and Manufacturing-Green Technology, 2024, 11(2), 685.
105 Leng B, Zhang Y, Tsai D P, et al. Light: Advanced Manufacturing, 2024, 5(1), 117.
106 Shi X, Liang Z, Hou E, et al. Optics Express, 2023, 31(25), 41105.
107 Fu J, Jiang H, Nie C, et al. Nano Letters, 2023, 23(11), 4923.
108 Zhang C, Chen L, Lin Z, et al. Light: Science & Applications, 2024, 13(1), 23.
109 Fu J, Guo Z, Nie C, et al. The Innovation, DOI:10. 1016/j. xinn. 2024. 100600.
110 Fu J, Ji L, Wu Z, et al. Device, DOI:10. 1016/j. device. 2024. 100321.
111 Jiang H, Nie C, Fu J, et al. Nanophotonics, 2020, 9(11), 3663.
112 Jiang H, Wang M, Fu J, et al. ACS Nano, 2022, 16(8), 12777.
113 Fu J, Nie C, Sun F, et al. Science Advances, 2024, 10(7), eadk8199.
114 Li L, Wang J, Kang L, et al. ACS Nano, 2020, 14(12), 16634.
115 Bu Y, Ren X, Zhou J, et al. Light: Science & Applications, 2023, 12(1), 176.
116 Jiang H, Chen Y, Guo W, et al. Nature Communications, 2024, 15(1), 8347.
117 Dong J, Tang L, Wei B, et al. Results in Physics, 2024, 66, 108002.
[1] 贺亦菲, 杨德仁, 皮孝东. 基于硅/二维层状材料异质结的红外光电探测器研究进展[J]. 材料导报, 2024, 38(1): 22030194-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed