Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22110060-7    https://doi.org/10.11896/cldb.22110060
  高分子与聚合物基复合材料 |
木材胶黏剂仿生改性研究进展
崔政, 李京超, 李建章, 高强*
北京林业大学木质材料科学与应用教育部重点实验室,木材科学与工程北京市重点实验室,北京 100083
Research Progress in the Biomimetic Modification of Wood Adhesives
CUI Zheng, LI Jingchao, LI Jianzhang, GAO Qiang*
Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
下载:  全 文 ( PDF ) ( 5065KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,利用无醛胶黏剂替代醛类树脂胶黏剂制备人造板产品成为木材胶黏剂研究热点,符合国家可持续发展和“双碳”战略。生物仿生为木材胶黏剂的改性和性能提升提供了设计灵感,是一种新兴且有效的改性策略。通过仿生设计与改性,无醛木材胶黏剂的耐水性、防霉性、涂布预压性等得到显著提升的同时可以赋予胶黏剂功能性,是木材工业研究热点之一。本文综述了无醛木材胶黏剂仿生改性研究进展,按照仿生原理分为生物化学仿生木材胶黏剂(包括灵感来源于贻贝湿态黏附或模拟生物矿化、细胞壁构筑和重组键合网络过程等)以及结构仿生木材胶黏剂(包括灵感来源于壁虎脚趾微纳刷状结构、蜘蛛丝微相分离结构、珍珠层“砖和砂浆”结构、墨鱼骨多孔结构、弹簧螺旋结构等)。重点介绍了仿生原理、配方设计、胶黏剂性能和潜在应用价值,以期为木材胶黏剂的开发与高附加值利用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔政
李京超
李建章
高强
关键词:  无醛木材胶黏剂  仿生  性能  功能性    
Abstract: Utilizing formaldehyde-free adhesive to replace formaldehyde-based resin adhesivein the preparation of wood-based panel products has become a research hotspot in wood adhesive technology. It aligns with China’s sustainable development and ‘dual-carbon’ strategy. The biomimetic modification provides a promising approach to improving the properties and performance of wood adhesives. By mimicking biological systems, including biological chemistry and structural principles, non-formaldehyde wood adhesives can be developed with improved water resis-tance, mold resistance, pre-press coating performance, and functional properties. This review summarizes the progress of the biomimetic modification of non-formaldehyde wood adhesives, which are categorized according to biomimetic principles as biological chemical wood adhesives, including inspiration from mussel DOPA (dihydroxyphenylalanine) chemical adhesion or biological mineralization, cell wall construction, and recoupling bonding network process, and structural wood adhesives, including inspiration from gecko toe nanobrush structure, spider silk microphase separation structure, shell ‘brick and mortar’ structure, squid bone porous structure, and spring spiral structure. The principles, formulation design, adhesive properties, and potential applications of biomimetic wood adhesives are highlighted to provide insights into the development and high-value utilization of wood adhesives.
Key words:  formaldehyde-free wood adhesive    biomimetic    property    functionality
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TQ43  
基金资助: 国家自然科学基金(32071702);北京林业大学杰出青年人才计划项目(2019JQ03004)
通讯作者:  *高强,北京林业大学材料科学与技术学院教授、博士研究生导师。2012年博士毕业于北京林业大学,研究方向为木质复合材料与胶黏剂,主持国家自然科学基金优青项目等10余项,发表学术论文120余篇,获国家发明专利授权20余项,多项专利技术实现工业化应用。gaoqiang@bjfu.edu.cn   
作者简介:  崔政,2019年6月于北京林业大学获得工学学士学位。现为北京林业大学材料科学与技术学院硕士研究生,在高强教授的指导下进行研究。目前主要研究领域为木质复合材料与胶黏剂。
引用本文:    
崔政, 李京超, 李建章, 高强. 木材胶黏剂仿生改性研究进展[J]. 材料导报, 2024, 38(8): 22110060-7.
CUI Zheng, LI Jingchao, LI Jianzhang, GAO Qiang. Research Progress in the Biomimetic Modification of Wood Adhesives. Materials Reports, 2024, 38(8): 22110060-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22110060  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22110060
1 Gao Q, Liu Z, Li J Z. Journal of Forestry Engineering, 2020, 5(2), 1(in Chinese).
高强, 刘峥, 李建章. 林业工程学报, 2020, 5(2), 1.
2 Guo X Z, Li Z H, Wan Z W, et al. Journal of Chemical Engineering of Chinese Universities, 2021, 35(4), 579(in Chinese).
郭鑫珠, 李泽珩, 万正威, 等. 高校化学工程学报, 2021, 35(4), 579.
3 Ge M L, Ye Q Q, Kang H J, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(4), 1202(in Chinese).
葛梦龙, 叶倩倩, 康海娇, 等. 硅酸盐通报, 2022, 41(4), 1202.
4 Liu X R, Chen H, Gao Q, et al. China Oils and Fats, 2023, 48(9), 75(in Chinese).
刘欣锐, 陈惠, 高强, 等. 中国油脂, 2023, 48(9), 75.
5 Wang R G, Yang G, Yang B, Applied Chemical Industry, 2017, 46(10), 2043(in Chinese).
王睿聪, 杨光, 杨波. 应用化工, 2017, 46(10), 2043.
6 Pang Y F, Xu W T, Li Q, et al. China Forest Products Industry, 2018, 45(4), 3(in Chinese).
庞艳芳, 徐伟涛, 李琪, 等. 林产工业, 2018, 45(4), 3.
7 Ma X, Bian Q, Hu J, et al. Journal of Controlled Release, 2022, 345, 292.
8 Wang Y, Jeon E J, Lee J, et al. Advanced Materials, 2020, 32(43), e2002118.
9 Krogsgaard M, Nue V, Birkedal H. Chemistry—a European Journal, 2016, 22(3), 844.
10 Lee K, Prajatelistia E, Hwang D S, et al. Chemistry of Materials, 2015, 27(19), 6478.
11 Wang Z, Zhang S, Zhao S, et al. Chemical Engineering Journal, 2021, 404, 127069.
12 Basak S. Biotechnology and Bioprocess Engineering, 2021, 26(1), 10.
13 Yao L, He C, Chen S, et al. Langmuir, 2019, 35(5), 1430.
14 Chen T, Yang M, Yang H, et al. Journal of Industrial and Engineering Chemistry, 2019, 69, 179.
15 Liang Y, Xu H, Li Z, et al. Nano-Micro Letters, 2022, 14(1), 185.
16 Li J, Wu S, Tian X, et al. Chemical Engineering Journal, 2022, 446, 136837.
17 Jiang Y H, Zhang Y Q, Wang Z H, et al. Journal of Colloid and Interface Science, 2022, 628, 356.
18 Guo Q, Zou G, Qian X, et al. Nature Communications, 2022, 13(1), 5771.
19 Degen G D, Cunha K C, Levine Z A, et al. Journal of Physical Chemistry B, 2021, 125(35), 9999.
20 Zuykov M, Hayhurst L, Murakami-Sugihara N, et al. Chemosphere, 2022, 303, 134912.
21 Cho M K, Seo H J, Lee J H, et al. Polymer Chemistry, 2021, 12(48), 7023.
22 Liu G, Zhang X, Lu M, et al. Food Chemistry, 2022, 393, 133337.
23 Novakov N J, Kartalovic B D, Mihaljev Z A, et al. Food Additives & Contaminants Part B-Surveillance, 2021, 14(3), 219.
24 Grigoriou C, Costopoulou D, Vassiliadou I, et al. Molecules, 2021, 26(19), 5953.
25 Wang G L, Cui X, Chen Y, et al. Progress in Chemistry, 2021, 33(12), 2378(in Chinese).
王桂龙, 崔辛, 陈莹, 等. 化学进展, 2021, 33(12), 2378.
26 Li Z, Zhao S, Wang Z, et al. Journal of Hazardous Materials, 2020, 396, 122722.
27 Liu Z, Liu T, Li Y, et al. Journal of Cleaner Production, 2022, 366, 132906.
28 Ma C, Pang H, Cai L, et al. Journal of Cleaner Production, 2021, 308, 127309.
29 Choi Y, Kang K, Son D, et al. ACS Nano, 2022, 16(1), 1368.
30 Gao S, Wang W, Wu T, et al. ACS Applied Materials & Interfaces, 2021, 13(29), 34843.
31 Pang H, Ma C, Zhang S. International Journal of Biological Macromolecules, 2022, 209, 83.
32 Gu W, Liu X, Ye Q, et al. Industrial Crops and Products, 2020, 150, 112424.
33 Song W, Zhang S, Fei B, et al. European Journal of Wood and Wood Products, 2022, 81, 451.
34 Tang W M, Xu Y T, Zhao H, et al. Journal of Forestry Engineering, 2022, 7(3), 136(in Chinese).
唐望明, 徐艳涛, 赵涵, 等. 林业工程学报, 2022, 7(3), 136.
35 Li K, Jin S, Zhou Y, et al. Composites Part B: Engineering, 2022, 240, 109987.
36 Li Y, Huang X, Xu Y, et al. Chemical Engineering Journal, 2022, 430, 133017.
37 Yu Y, Guo Z, Zhao Y, et al. Advanced Materials, 2022, 34(9), 2107523.
38 Chen Y, Shi J. Advanced Materials, 2016, 28(17), 3235.
39 Zhang H, Shu J, Wu J, et al. ACS Applied Materials & Interfaces, 2020, 12(23), 26509.
40 Suksangpanya N, Yaraghi N A, Pipes R B, et al. International Journal of Solids and Structures, 2018, 150, 83.
41 Mirkhalaf M, Dastjerdi A K, Barthelat F. Nature Communications, 2014, 5, 3166.
42 Fernandez J G, Ingber D E. Advanced Materials, 2012, 24(4), 480.
43 Xu Y, Han Y, Li Y, et al. Chemical Engineering Journal, 2022, 437, 135437.
44 Zhang Y, Liu Z, Xu Y, et al. Chemical Engineering Journal, 2021, 426, 130852.
45 Liu Z, Liu T, Gu W, et al. Chemical Engineering Journal, 2022, 449, 137822.
46 Chen Y, Lyu Y, Yuan X, et al. International Journal of Biological Macromolecules, 2022, 219, 611.
47 Xu Y, Zhang X, Wang G, et al. Chemical Engineering Journal, 2022, 447, 137536.
48 Ma C, Pang H, Shen Y, et al. Composites Part B: Engineering, 2022, 242, 110049.
49 Li K, Jin S, Li X, et al. Chemical Engineering Journal, 2021, 421, 129820.
50 Burton R A, Gidley M J, Nature Chemical Biology, 2010, 6(10), 724.
51 Ryden P, Sugimoto-Shirasu K, Smith A C, et al. Plant Physiology, 2003, 132(2), 1033.
52 O’Neill M A, Eberhard S, Albersheim P, et al. Science(New York, NY), 2001, 294(5543), 846.
53 Gu W, Li F, Liu X, et al. Green Chemistry, 2020, 22(4), 1319.
54 Zhou Y, Zeng G, Zhang F, et al. European Polymer Journal, 2022, 164, 110973.
55 Liu X, Xiao X, Zhang T, et al. Industrial Crops and Products, 2022, 180, 114791.
56 Narayan M. Molecules, 2020, 25(22), 5337.
57 Zhang N. Synergistic decomposing of keratinous fibers with chemical-enzyme system and the structure characterization and performance analysis of the products. Ph. D. Thesis, Jiangnan University, China, 2021(in Chinese).
张楠. 角蛋白纤维的化学-酶法协同降解及其产物结构表征和性能分析. 博士学位论文, 江南大学, 2021.
58 Zhang Y C, Alsop R J, Soomro A, et al. Peerj, 2015, 3, e1296.
59 Leng X, Zhou X, Liu J, et al. Materials Horizons, 2021, 8(5), 1538.
60 Li X, Zhou Y, Li J, et al. Macromolecular Materials and Engineering, 2021, 306(12), 2100498.
61 Yan Q, Ma C, Liang Z, et al. Journal of Cleaner Production, 2022, 373, 133709.
62 Zeng G, Zhou Y, Liang Y, et al. Chemical Engineering Journal, 2022, 434, 134632.
63 Zhu C C. Preparation and properties of snail mucus/regenerated silk fibroin nanocomposite. Master’s Thesis, Soochow University, China, 2020(in Chinese).
朱聪聪. 蜗牛粘液/再生丝素蛋白复合材料的制备及性能研究. 硕士学位论文, 苏州大学, 2020.
64 Cho H, Wu G, Jolly J C, et al. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(28), 13774.
65 Giokas S, Pafilis P, Valakos E. Journal of Molluscan Studies, 2005, 71, 15.
66 Liu Z, Liu T, Jiang H, et al. International Journal of Biological Macromolecules, 2022, 214, 230.
67 Xu Y, Han Y, Shi S Q, et al. Journal of Cleaner Production, 2020, 255, 120303.
68 Autumn K, Peattie A M. Integrative and Comparative Biology, 2002, 42(6), 1081.
69 Ma X K. Study on the mechanism of adhesive fall of gecko and its bionics enlightenment. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2021(in Chinese).
马晓康. 大壁虎斜面黏附着落的行为与力学研究及仿生启示. 硕士学位论文, 南京航空航天大学, 2021.
70 Song Y. Bionic research on the synergistically regulatory mechanism among the distributed toe adhesions in geckos. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2020(in Chinese).
宋逸. 壁虎黏附的分布式协同调控机制仿生研究. 博士学位论文, 南京航空航天大学, 2020.
71 Liu X, Wang K, Gao Q, et al. Journal of Cleaner Production, 2019, 236, 117591.
72 Zhang J, Long C, Zhang X, et al. Chemical Engineering Journal, 2022, 450, 138387.
73 Zhou Y, Wu T, Zeng G, et al. Journal of Cleaner Production, 2021, 323, 129194.
74 Gu L, Jiang Y, Hu J. Advanced Materials, 2019, 31(48), 1904311.
75 Li C, Ni Z S. Acta Materiae Compositae Sinica, 2022, 39(6), 2515(in Chinese).
李昶, 倪中石. 复合材料学报, 2022, 39(6), 2515.
76 Zhang X, Liu W, Yang D, et al. Advanced Functional Materials, 2019, 29(4), 1806912.
77 Wang Q, Mcardle P, Wang S L, et al. Nature Communications, 2022, 13(1), 4329.
78 Yao P, Chen Z, Liu T, et al. Advanced Materials, 2022, 34(51), 2208236.
79 Wen R. The study of three spidroin gene structures and biomimetic spider silk properties. Ph. D. Thesis, Donghua University, China, 2020(in Chinese).
温睿. 三种蜘蛛丝蛋白基因结构及仿生蛛丝的性能研究. 博士学位论文, 东华大学, 2020.
80 Huemmerich D, Helsen C W, Quedzuweit S, et al. Biochemistry, 2004, 43(42), 13604.
81 Zhang J, Zhang M, Zhang Y, et al. ACS Sustainable Chemistry & Engineering, 2020, 9(1), 168.
82 Li J, Chen Y, Zhang F, et al. Chemical Engineering Journal, 2022, 438, 135442.
83 Xu Y, Han Y, Li Y, et al. Journal of Applied Polymer Science, 2022, 139(21), 52202.
84 Xie H L, Lai X J, Wang Y L, et al. Journal of Hazardous Materials, 2019, 365, 125.
85 Yu H P. Construction of bioinspired ordered structured materials by controlled assembly of ultralong hydroxyapatite nanowires and their properties. Ph. D. Thesis, Shanghai Institute of Ceramics, Chinese Academy of Sciences, China, 2021(in Chinese).
余汉平. 基于羟基磷灰石超长纳米线可控组装构建仿生有序结构材料及其性能研究. 博士学位论文, 中国科学院大学(中国科学院上海硅酸盐研究所), 2021.
86 Bai S, Zhang X, Lv X, et al. Advanced Functional Materials, 2020, 30(5), 1908381.
87 Wang L, Wang Y, Dai J, et al. Carbohydrate Polymers, 2021, 251, 117097.
88 Meng Y F, Yang F, Mao L B, et al. Journal of University of Science and Technology of China, 2022, 52(7), 3.
89 Zhu Z H, Shi J F, Yang L, et al. Henan Science and Technology, 2021, 40(18), 28(in Chinese).
祝子浩, 史金飞, 杨柳, 等. 河南科技, 2021, 40(18), 28.
90 Zheng S F, Wang Y Y, Zhang Z K, et al. Journal of Functional Materials, 2024, 55(1), 1048(in Chinese).
郑舒方, 王玉印, 张泽楷, 等. 功能材料, 2024, 55(1), 1048.
91 Cao J, Jin S, Li C, et al. Journal of Cleaner Production, 2021, 299, 126939.
92 Sun X, Ye Q, Shi S Q, et al. Wood Material Science & Engineering, 2021, 18, 254.
93 Mao A, Zhao N, Liang Y, et al. Advanced Materials, 2021, 33(15), 2007348.
94 Xu J, Cao R, Li M, et al. Chemical Engineering Journal, 2021, 420, 127596.
95 Han Y, Xu Y, Shi S Q, et al. Journal of Cleaner Production, 2022, 370, 133365.
96 Xie L H, Du R X. Applied Mechanics and Materials, 2012, 268-270, 1105.
97 Yan S, Xu J, Zhang S, et al. Lwt-Food Science and Technology, 2021, 142, 110881.
98 Ikai A. Biopolymers: lignin, proteins, bioactive nanocomposites, Springer-Verlag, Germany, 2010, pp. 65.
99 Zhou Y, Fang Z, Zeng G, et al. Chemical Engineering Journal, 2022, 436, 135023.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[3] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[4] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[5] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[10] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[11] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[12] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[13] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[14] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[15] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed