Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22080083-6    https://doi.org/10.11896/cldb.22080083
  无机非金属及其复合材料 |
钻井废弃泥浆固化土力学特性试验分析
吕絮1, 刘俊伟1,*, 高嵩1, 孟鋆2, 国振3
1 青岛理工大学土木工程学院,山东 青岛 266033
2 中石化石油工程设计有限公司,山东 东营 257026
3 浙江大学建筑工程学院,杭州 310000
Experimental Study on Mechanical Properties of the Solidified Soil from Drilling Waste Mud
LYU Xu1, LIU Junwei1,*, GAO Song1, MENG Yun2, GUO Zhen3
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
2 Sinopec Petroleum Engineering Design Co., Ltd., Dongying 257026, Shandong, China
3 College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310000, China
下载:  全 文 ( PDF ) ( 5619KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石油开采过程中产生大量钻井废弃泥浆,直接排放会造成环境污染,对钻井废弃泥浆进行处理势在必行。针对钻井废弃泥浆采用固化处理方法,并对固化土的力学特性进行系统试验分析。研究结果表明:固化土的应力应变曲线为应变软化型,发生脆性破坏;曲线峰值随着围压的增加和养护龄期的延长而升高;随冻融循环次数的增加而降低,6—8次后趋于稳定,冻融循环对固化土的强度影响明显。固化土发生刚度软化现象,E-ε曲线整体呈下降趋势,刚度随着围压的增加和养护龄期的延长而增加,随冻融循环次数的增加而降低,无量纲化割线模量与无量纲化主应力差的关系曲线由两部分组成,呈现倒C型。对固化土力学性能的研究有利于废弃泥浆的资源化再利用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕絮
刘俊伟
高嵩
孟鋆
国振
关键词:  钻井废弃泥浆  固化剂  静力特性  冻融循环    
Abstract: Massive drilling waste mud is produced in the process of oil exploitation. People stack or discharge the drilling waste mud into the surrounding area directly, which will cause environmental pollution. It is imperative to dispose drilling waste mud. The solidification treatment method is adopted for drilling waste mud. And systematic experimental analysis on the mechanical properties of waste drilling mud is carried out. The results showed that the stress-strain curve of solidified soil is strain-softening type, and brittle failure occurred. The curve peak rise with the increase of confining pressure and curing age, while fell with the increase of the number of freeze-thaw cycles, tending to be stable after six to eight times. And freeze-thaw cycles exerted significant effects on the strength of the solidified soil. The phenomenon of stiffness softening occurred in the solidified soil, and the E-ε curve registered an overall downward trend. The stiffness is positively correlated with confining pressure and curing age, while it showed a negative correlation with the number of freeze-thaw cycles. On the whole, the relation curve between dimensionless secant modulus and dimensionless principal stress difference is composed by two parts, showing an inverted C shape. Study on mechanical properties of solidified soil is beneficial to resource reuse of waste mud.
Key words:  drilling waste mud    curing agent    static property    freeze-thaw cycle
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TU43  
基金资助: 山东省优秀青年基金(ZR2021YQ31);国家自然科学基金(42277135;U2006225)
通讯作者:  刘俊伟,博士,教授,青岛理工大学土木工程学院副院长,2012年毕业于浙江大学,获得博士学位。主要从事滨海岩土防灾减灾方面的研究工作。主持国家自然科学基金和国家自然科学基金联合项目等多项研究基金,出版学术著作3部,近三年发表SCI/EI论文15篇。liujunwei@qut.edu.cn   
作者简介:  吕絮,现为青岛理工大学土木工程学院硕士研究生,在刘俊伟教授的指导下进行研究,目前主要进行固化土力学性质的研究。
引用本文:    
吕絮, 刘俊伟, 高嵩, 孟鋆, 国振. 钻井废弃泥浆固化土力学特性试验分析[J]. 材料导报, 2024, 38(7): 22080083-6.
LYU Xu, LIU Junwei, GAO Song, MENG Yun, GUO Zhen. Experimental Study on Mechanical Properties of the Solidified Soil from Drilling Waste Mud. Materials Reports, 2024, 38(7): 22080083-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080083  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22080083
1 He J A. Environmental Protection of Oil & Gas Fields, 2002(3), 37(in Chinese).
贺吉安. 油气田环境保护, 2002(3), 37.
2 Zhang S X. Safety and Environmental Engineering, 2007(2), 63(in Chinese).
张淑侠. 安全与环境工程, 2007(2), 63.
3 Yang A W. Zhou J. Kong L W. Rock and Soil Mechanics, 2013(9), 2442(in Chinese).
杨爱武, 周金, 孔令伟. 岩土力学, 2013(9), 2442.
4 Hou B, Yang Y P, Sun H. Applied Chemical Industry, 2017, 46(11), 2191(in Chinese).
侯博, 杨勇平, 孙欢. 应用化工, 2017, 46(11), 2191.
5 Liu Y C, Liu Q, Wu D H, et al. Chemical Engineering of Oil and Gas, 2017, 46(5), 106(in Chinese).
刘宇程, 刘骞, 吴东海, 等. 石油与天然气化工, 2017, 46(5), 106.
6 Xiao Z Z, Wu J Q, Zhang L O. Speciality Petrochemicals, 2019, 36(4), 6(in Chinese).
肖早早, 吴家全, 张力鸥. 精细石油化工, 2019, 36(4), 6.
7 Chen L, Chen Z J, Li J M. Drilling Production Technology, 2021, 44(4), 110(in Chinese).
陈磊, 陈在君, 黎金明. 钻采工艺, 2021, 44(4), 110.
8 Fang K, Zhang Z M, Liu X W, et. al. Chinese Journal of Geotechnical Engineering, 2011(S2), 238(in Chinese).
房凯, 张忠苗, 刘兴旺, 等. 岩土工程学报, 2011(S2), 238.
9 Cheng X W, Long D, Zhang C, et al. Journal of Cleaner Production, 2019, 238(C), 117902.
10 Anghelescu L, Cruceru M, Diaconu B. Construction and Building Materials, 2019, 227(C), 116616.
11 He J, Shi X K, Li Z X, et al. Construction and Building Materials, 2020, 242(C), 729.
12 Gao S, Chen Y, Chen L, et al. Municipal Engineer,DOI:10. 1680/JMUEN. 18. 00021.
13 Li D Y, Sun C Z, Jian M X, et al. Chinese Journal of Underground Space and Engineering, 2017, 13(1), 29(in Chinese).
李地元, 孙成志, 蹇明星, 等. 地下空间与工程学报, 2017, 13(1), 29.
14 Cheng Y, Yu H, Li Q D, et al. Chinese Journal of Underground Space and Engineering, 2020, 16(5), 1405(in Chinese).
程寅, 于浩, 李钦栋, 等. 地下空间与工程学报, 2020, 16(5), 1405.
15 Wei L, Chai S X, Zhang L, et al. Rock and Soil Mechanics, 2022(12), 1(in Chinese).
魏丽, 柴寿喜, 张琳, 等. 岩土力学, 2022(12), 1.
16 Tao P. Bulletin of the Chinese Ceramic Society, 2021, 40(1), 34(in Chinese).
陶攀. 硅酸盐通报, 2021, 40(1), 34.
17 Yan C G, Zhang Z Q, Jing Y L. Arabian Journal of Geosciences, 2017, 10(24), 1.
18 Su D L, Guo Y X, Yue G B, et al. Journal of Building Materials, 2021, 24(2), 237(in Chinese).
苏敦磊, 郭远新, 岳公冰, 等. 建筑材料学报, 2021, 24(2), 237.
19 Liu J K. Roadbed construction, China Architecture & Building Press, 2006(in Chinese).
刘建坤. 路基工程, 中国建筑工业出版社, 2006.
20 Li Y P, Li T. Materials Reports, 2020, 34(S2), 1273(in Chinese).
力乙鹏, 李婷. 材料导报, 2020, 34(S2), 1273.
21 Wang J, Ding G Y, Pan L Y, et al. Rock and Soil Mechanics, 2010, 31(5), 1407(in Chinese).
王军, 丁光亚, 潘林有, 等. 岩土力学, 2010, 31(5), 1407.
22 Wang D Y, Ma W, Chang X X, et al. Chinese Journal of Rock Mechanics and Engineering, 2005(23), 4313(in Chinese).
王大雁, 马巍, 常小晓, 等. 岩石力学与工程学报, 2005(23), 4313.
23 Shao L, Li P Q, Wang B J. Journal of Highway and Transportation Research and Development, 2022, 39(1), 40(in Chinese).
邵俐, 李佩青, 王彬杰. 公路交通科技, 2022, 39(1), 40.
[1] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[2] 戈雪良, 柯敏勇, 刘伟宝, 陆采荣, 王珩, 梅国兴, 杨虎. 混凝土冻融作用下冻结应力演化规律及对抗冻性能的影响[J]. 材料导报, 2024, 38(12): 22070144-5.
[3] 吉贝贝, 吴楠, 刘姣, 廖维, 吕家杰, 尹昌平, 邢素丽. 高性能邻苯二甲腈树脂分子结构调控研究进展[J]. 材料导报, 2023, 37(S1): 23030102-10.
[4] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[5] 李建东, 张延杰, 王旭, 蒋代军, 王兴为. 新型固化剂加固膨胀土研究现状及展望[J]. 材料导报, 2023, 37(5): 21030148-11.
[6] 石东升, 张鹏, 姜文超, 韩平, 马政. 生活垃圾焚烧渣细骨料混凝土冻融及自愈试验[J]. 材料导报, 2023, 37(19): 22030250-5.
[7] 冯云霞, 罗钰鸿, 牛开民, 郭鹏. 盐及环境耦合作用下沥青和混合料性能劣化规律及机理研究进展[J]. 材料导报, 2023, 37(13): 22050114-10.
[8] 卢喆, 姚文娟, 王社良, 王善伟, 刘博. 复掺天然植物油与青麻纤维对古建筑修复灰浆抗盐冻性能的影响[J]. 材料导报, 2023, 37(12): 22010153-9.
[9] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[10] 张秉宗, 贡力, 杜强业, 梁颖, 宫雪磊, 杜秀萍. 西北盐渍干寒地区聚丙烯纤维混凝土耐久性损伤试验研究[J]. 材料导报, 2022, 36(17): 21030317-7.
[11] 惠冰, 李扬, 张炎棣, 杨心怡. 水性环氧乳化沥青固化-破乳速率调控效能及作用机理[J]. 材料导报, 2022, 36(16): 22050008-6.
[12] 钟玉健, 张晓超, 袁锐, 吴学敏, 陈林万. 非钙基土壤固化剂加固机理及其应用性能研究进展[J]. 材料导报, 2022, 36(14): 20110066-9.
[13] 王英, 杨熙, 姜继斌, 李萍, 念腾飞. 动水冲刷作用下季冻区沥青混合料水损害发展的细观过程[J]. 材料导报, 2022, 36(10): 21040158-7.
[14] 艾兵, 包予佳, 张世超, 孙现凯, 孙浩然, 陶柳实, 王春朋. 氧化锌和氧化镁对磷酸盐胶黏剂吸潮性能的影响[J]. 材料导报, 2021, 35(z2): 72-74.
[15] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed