Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 186-193    
  无机非金属及其复合材料 |
铁矿粉预还原回转窑气固三维传输行为
孙健, 戚添益, 居殿春, 邱家用
江苏科技大学冶金与材料工程学院,苏州 215600
Three-dimensional Flow and Heat Transfer Behavior of Gas-Solid in Iron Ore Powder Pre-reduction Rotary Kiln
SUN Jian, QI Tianyi, JU Dianchun, QIU Jiayong
School of Metallurgy and Materials Engineering, Jiangsu University of Science and Technology, Suzhou 215600, China
下载:  全 文 ( PDF ) ( 9623KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用数值模拟方法先讨论煤气、物料物性参数以及回转窑运行参数对窑内煤气和物料运动特性的影响规律,再探讨其对窑轴向煤气温度变化趋势和窑横截面温度变化趋势的影响规律。研究表明窑内煤气螺旋式前进,煤气温度在距离窑头0~15 m下降速度较快,随后变缓。随煤气喷吹速度的提高,窑内煤气温度提高。窑内物料体积分数分布呈S形。回转窑倾角过大导致物料颗粒最大速度远离中心弦位置;回转窑转速提高促使物料颗粒最大速度更接近中心弦位置。窑截面温度先平缓降低后迅速下降最后趋于平缓。合理的铁矿粉预还原回转窑工艺和结构参数为:物料质量流量13.88 kg/s、煤气进口风速16 m/s、回转窑倾角3°、回转窑转速0.6 r/min。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙健
戚添益
居殿春
邱家用
关键词:  预还原回转窑  煤气运动  物料颗粒运动  煤气温度  窑横截面温度    
Abstract: In this paper, the influence of physical parameters of gas and material as well as rotary kiln operating parameters on the motion characteristics of gas and material in the kiln were discussed firstly with the numerical simulation method, and the influence on the gas temperature distribution along kiln axial and the kiln cross-sectional temperature distribution were discussed in order to provide theoretical guidance for the pre-reduction process of iron ore powder rotary kiln. The study shows that the gas temperature in the kiln increases with the increase of gas injection velocity. Too large inclination angle of the rotary kiln causes the maximum velocity of material particles to be far from the position of the central chord. The increase of rotational velocity of the rotary kiln impel the location of maximum velocity of material particles to be close to the central chord. Excessively high gas injection velocity or material mass flow are negative to promote the heat exchange process in the kiln. Reasonable process and structure parameters of iron ore powder pre-reduction rotary kiln are as follows: material mass flow of 13.88 kg/s, gas inlet velocity of 16 m/s, rotary kiln inclination of 3° and rotary kiln rotational velocity of 0.6 r/min.
Key words:  pre-reduction rotary kiln    gas motion    material particle motion    gas temperature    kiln cross-sectional temperature
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TF551  
基金资助: “十三五”国家重点研发计划项目(2017YFB0603801)
通讯作者:  sun7210442@aliyun.com   
作者简介:  孙健,江苏科技大学副教授,硕士研究生导师。1999年9月至2003年6月,在江苏科技大学获得金属材料工程专业学士学位,2005年9月至2011年7月,在东北大学获得钢铁冶金专业工学博士学位,毕业后在江苏科技大学任教。以第一作者在国内外学术期刊上发表论文20余篇,申请国家发明专利2项。研究工作主要围绕特殊钢制备以及冶金过程数学物理模拟。主持包括江苏省自然科学基金青年项目等。已培养出硕士3名,本科生百余名。
引用本文:    
孙健, 戚添益, 居殿春, 邱家用. 铁矿粉预还原回转窑气固三维传输行为[J]. 材料导报, 2020, 34(Z2): 186-193.
SUN Jian, QI Tianyi, JU Dianchun, QIU Jiayong. Three-dimensional Flow and Heat Transfer Behavior of Gas-Solid in Iron Ore Powder Pre-reduction Rotary Kiln. Materials Reports, 2020, 34(Z2): 186-193.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/186
1 袁文. 冶金管理, 2019(16),41.
2 周亮亮.中国化工贸易, 2018,10(28),83.
3 杨婷,孙继青. 中国金属学会2006年中国非高炉炼铁会议论文集.沈阳,2006,pp.1.
4 路朝晖, 陈煜, 陈代明.钢铁研究学报, 2011, 23(5),11.
5 朱德庆, 邱冠周, 潘健.中南工业大学学报(自然科学版), 2002(1),24.
6 Hanein T, Glasser F P, Bannerman M N.British Ceramic Transactions, 2017, 116(4),207.
7 Mujumdar K S, Ranade V V.Chemical Engineering Research & Design, 2006, 84(3),165.
8 Mastorakos E, Massias A, Tsakiroglou C D, et al. Applied Mathematical Modelling, 1999, 23(1),55.
9 Agrawal A, Ghoshdastidar P S.International Journal of Heat & Mass Transfer, 2017, 106, 263.
10 易正明. 氧化铝回转窑热工分析与控制应用研究.博士学位论文,中南大学, 2007.
11 车凯. 回转窑内传热模型的建立及数值分析.硕士学位论文,山东大学, 2017.
12 杨潘. 回转窑内传热传质数学模型及其优化.硕士学位论文,西安建筑科技大学, 2011.
13 Tscheng S H, Watkinson A P.Canadian Journal of Chemical Enginee-ring, 1979, 57(4),433.
14 Ding Y L, Seville J P K, Forster R N, et al. Chemical Engineering Science, 2001, 56(5),1769.
15 Campbell C S, Zhang Y. Studies in Applied Mechanics, 1992, 31, 261.
16 Mellmann J. Powder Technology, 2001, 118(3),251.
No related articles found!
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed