Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1094-1099    https://doi.org/10.11896/j.issn.1005-023X.2018.07.008
  材料综述 |
pH响应性光子晶体
陈可, 马会茹
武汉理工大学化学化工与生命科学学院,武汉 430070
pH-Responsive Photonic Crystals
CHEN Ke, MA Huiru
School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070
下载:  全 文 ( PDF ) ( 1839KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 响应性光子晶体(Responsive photonic crystals,RPCs)具有无毒、无标记、低消耗和裸眼可视的优点,pH响应性光子晶体(pH-RPCs)为食品安全、生物医药、水体环境等领域提供了一种简便的检测方式。目前主要发展了胶体粒子组装体/反蛋白石、层状堆叠和全息三种结构类型的pH-RPCs。本文在介绍光子晶体(Photonic crystals,PCs)pH响应原理的基础上,从制备方法、结构特点和pH响应性能(如灵敏度、响应时间、可视化)等方面对上述pH-RPCs进行了详细的综述,分析总结了它们各自的优势和不足,并对其未来的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈可
马会茹
关键词:  响应性光子晶体(RPCs)  结构色  pH  响应性能    
Abstract: Responsive photonic crystals(RPCs) provide a simple, non-toxic, label-free and low-cost approach to the visualized pH detection in the fields of food safety, biological medicine and water protection. The already-developed pH-responsive photonic crystals(pH-RPCs) mainly include three structural types, i.e. colloidal particles assembled structure or inverse opal, layered stacking and holography. This review illustrated the working principle of pH response of photonic crystals (PCs), and subsequently offers elaborate descriptions about the preparation methods, structural features and response performance including sensitivity, response time and readability with respect to the above mentioned pH-RPCs. It ends with a summary of the pH-RPCs’ advantages and disadvantages, as well as a rough prospect for the future development trend.
Key words:  responsive photonic crystals (RPCs)    structural colors    pH    response performance
出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  O652  
基金资助: 国家自然科学基金(51573144;51303143);中央高校基本科研业务费专项资金资助项目(2017III028)
通讯作者:  马会茹:通信作者,女,1973年生,博士,副教授,研究方向为响应性光子晶体及其光学器件 E-mail:mahr@whut.edu.cn   
作者简介:  陈可:女,1992年生,硕士,研究方向为光子晶体传感器 E-mail:cocock17@163.com
引用本文:    
陈可, 马会茹. pH响应性光子晶体[J]. 《材料导报》期刊社, 2018, 32(7): 1094-1099.
CHEN Ke, MA Huiru. pH-Responsive Photonic Crystals. Materials Reports, 2018, 32(7): 1094-1099.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.008  或          https://www.mater-rep.com/CN/Y2018/V32/I7/1094
1 Yan Q F, Wang L K, Zhao X S. Artificial defect engineering in three-dimensional colloidal photonic crystals[J].Advanced Functio-nal Materials,2007,17(18):3695.
2 Zhao Y Z, Zhao X W, Gu Z Z. Photonic crystals in bioassays[J].Advanced Functional Materials,2010,20(18):2970.
3 Song Y J, Wei W L, Qu X G. Colorimetric biosensing using smart materials[J].Advanced Materials,2011,23(37):4215.
4 Zhao Y J, Xie Z Y, Gu H C, et al. Bio-inspired variable structural color materials[J].Chemical Society Reviews,2012,41(8):3297.
5 Aguirre C I, Reguera E, Stein A. Tunable colors in opals and inverse opal photonic crystals[J].Advanced Functional Materials,2010,20(16):2565.
6 Leiner M J P. Luminescence chemical sensors for biomedical applications: Scope and limitations[J].Analytica Chimica Acta,1991,255(2):209.
7 Nair R V, Vijaya R. Photonic crystal sensors: An overview[J].Progress in Quantum Electronics,2010,34(3):89.
8 Li M Z, Song Y L. High effective sensors based on photonic crystals[J].Frontiers of Chemistry in China,2010,5(2):115.
9 Ge J P, Yin Y D. Responsive photonic crystals[J].Angewandte Chemie,2011,50(7):1492.
10Hui W, Zhang K Q. Photonic crystal structures with tunable structure color as colorimetric sensors[J].Sensors,2013,13(4):4192.
11Fenzl C, Hirsch T, Wolfbeis O S. Photonic crystals for chemical sensing and biosensing[J].Angewandte Chemie,2014,53(13):3318.
12Yetisen A K, Butt H, Volpatti L R, et al. Photonic hydrogel sensors[J].Biotechnology Advances,2016,34(3):250.
13 Richter A, Paschew G, Klatt S, et al. Review on hydrogel-based pH sensors and microsensors[J].Sensors,2008,8(1):561.
14 Yetisen A K, Naydenova I, Da C V F, et al. Holographic sensors: Three-dimensional analyte-sensitive nanostructures and their applications[J].Chemical Reviews,2014,114(20):10654.
15 Weissman J M, Sunkara H B, Tse A S, et al. Thermally switchable periodicities and diffraction from mesoscopically ordered materials[J].Science,1996,274(5289):959.
16 Asher S A, Holtz J, Liu L, et al. Self-assembly motif for creating submicron periodic materials. polymerized crystalline colloidal arrays[J].Journal of the American Chemical Society,2002,116(11):4997.
17 Ge J P, He L, Hu Y D, et al. Magnetically induced colloidal assembly into field-responsive photonic structures[J].Nanoscale,2011,3(1):177.
18 Lee K, Asher S A. Photonic crystal chemical sensors: pH and ionic strength[J].Journal of the American Chemical Society,2000,122(39):9534.
19 Xu X L, Goponenko A V, Asher S A. Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials[J].Journal of the American Chemical Society,2008,130(10):3113.
20Goponenko A V, Asher S A. Modeling of stimulated hydrogel vo-lume changes in photonic crystal Pb2+ sensing materials[J].Journal of the American Chemical Society,2005,127(30):10753.
21Debord J D, Lyon L A. Thermoresponsive photonic crystals[J].The Journal of Physical Chemistry B,2000,104(27):6327.
22Honda M, Seki T, Takeoka Y. Dual tuning of the photonic band-gap structure in soft photonic crystals[J].Advanced Materials,2009,21(18):1801.
23 Jia X L, Hu Y D, Wang K, et al. Uniform core-shell photonic crystal microbeads as microcarriers for optical encoding[J].Langmuir:the ACS Journal of Surfaces & Colloids,2014,30(40):11883.
24 Sharma A C, Jana T, Kesavamoorthy R, et al. A general photonic crystal sensing motif: Creatinine in bodily fluids[J].Journal of the American Chemical Society,2004,126(9):2971.
25 Cui Q Z, Wang W, Gu B H, et al. A combined physical-chemical polymerization process for fabrication of nanoparticle-hydrogel sen-sing materials[J].Macromolecules,2012,45(20):8382.
26 Mafé S, Manzanares J A, English A E, et al. Multiple phases in io-nic copolymer gels[J].Physical Review Letters,1997,79(16):3086.
27 Zhang J T, Wang L L, Luo J, et al. 2-D array photonic crystal sen-sing motif[J].Journal of the American Chemical Society,2011,133(24):9152.
28 Tikhonov A. Reflectivity enhanced two-dimensional dielectric particle array monolayer diffraction[J].Journal of Nanophotonics,2012,6(1):063509.
29 Wang J Q, Wu Y Y, Ji X Y, et al. Progress of opal and inverse opal photonic crystals preparation[J].Materials Review A: Research Papers,2014,28(9):36(in Chinese)
王金权,吴媛媛,冀晓媛,等.蛋白石、反蛋白石结构的光子晶体的制备进展[J].材料导报:综述篇,2014,28(9):36
30Lee Y J, Braun P V. Tunable inverse opal hydrogel pH sensors[J].Advanced Materials,2003,15(7-8):563.
31Shin J, Braun P V, Lee W. Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal[J].Sensors and Actuators B:Chemical,2010,150(1):183.
32Griffete N, Frederich H, Maître A, et al. Photonic crystal pH sensor containing a planar defect for fast and enhanced response[J].Journal of Materials Chemistry,2011,21(34):13052.
33 Griffete N, Frederich H, Maître A, et al. Inverse opals of molecularly imprinted hydrogels for the detection of bisphenol A and pH sensing[J].Langmuir:The ACS Journal of Surfaces & Colloids,2012,28(1):1005.
34 Li C, Lotsch B V. Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing[J].Chemical Communications,2012,48(49):6169.
35 Wang J Y, Hu Y D, Deng R H, et al. Multiresponsive hydrogel photonic crystal microparticles with inverse-opal structure[J].Langmuir:The ACS Journal of Surfaces & Colloids,2013,29(28):8825.
36 Mak S Y, Chen D H. Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles[J].Dyes and Pigments,2004,61(1):93.
37 Wang H, Sun Y B, Chen Q W, et al. Synthesis of carbon-encapsulated superparamagnetic colloidal nanoparticles with magnetic-responsive photonic crystal property[J].Dalton Transactions,2010,39(40):9565.38 Luo W, Ma H R, Mou F Z, et al. Steric-repulsion-based magnetically responsive photonic crystals[J].Advanced Materials,2014,26(7):1058.
39 Zhang C C, Wen B, Dong Y X, et al. Research progress in magnetic-response-based photonic crystals[J].Chemical Industry and Engineering Progress,2015,34(7):1913(in Chinese).
张超灿,文斌,董一笑,等.快速磁响应光子晶体的研究进展[J].化工进展,2015,34(7):1913.
40Ma H R, Tang K, Luo W, et al. Photonic nanorods with magnetic responsiveness regulated by lattice defects[J].Nanoscale,2017,9(9):3105.
41Jia X L, Wang K, Wang J Y, et al. Full-color photonic hydrogels for pH and ionic strength sensing[J].European Polymer Journal,2016,83:60.
42Bonifacio L D, Lotsch B V, Puzzo D P, et al. Stacking the nanochemistry deck: Structural and compositional diversity in one-dimensional photonic crystals[J].Advanced Materials,2009,21(16):1641.
43 O’Reilly R K, Hawker C J, Wooley K L. Cross-linked block copolymer micelles: Functional nanostructures of great potential and versatility[J].Chemical Society Reviews,2006,35(11):1068.
44 Xia H W, Zhao J P, Meng C, et al. Amphoteric polymeric photonic crystal with U-shaped pH response developed by intercalation polymerization[J].Soft Matter,2011,7(9):4156.
45 Yue Y F, Gong J P. Tunable one-dimensional photonic crystals from soft materials[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2015,23:45.
46 Liu C H, Yao C, Zhu Y X, et al. Dually responsive one dimensional photonic crystals with reversible color changes[J].Sensors and Actua-tors B:Chemical,2015,220:227.
47 Bagratashvili V N, Rybaltovsky A O, Minaev N V, et al. Laser-induced atomic assembling of periodic layered nanostructures of silver nanoparticles in fluoro-polymer film matrix[J].Laser Physics Letters,2010,7(5):401.
48 Smirnova T N, Kokhtych L M, Kutsenko A S, et al. The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure[J].Nanotechnology,2009,20(40):405301.
49 Marshall A J, Blyth J, Davidson C A B, et al. pH-sensitive holographic sensors[J].Analytical Chemistry,2003,75(17):4423.
50Martinezhurtado J L, Davidson C A, Blyth J, et al. Holographic detection of hydrocarbon gases and other volatile organic compounds[J].Langmuir:The ACS Journal of Surfaces & Colloids,2010,26(19):15694.
51Yetisen A K, Butt H, Da C V F, et al. Light-directed writing of chemically tunable narrow-band holographic sensors[J].Advanced Optical Materials,2014,2(3):250.
[1] 蔡轩皓, 娄兴, 覃继宁, 周涵. 电致变色材料微纳结构设计及多波段调控应用研究进展[J]. 材料导报, 2024, 38(21): 23100087-7.
[2] 俞朱敏, 李琳, 赵凯, 吴梦悦, 叶常青. 具有光子晶体结构的电致变色器件的研究进展[J]. 材料导报, 2024, 38(21): 23070230-13.
[3] 姜绍飞, 林金星, 宋华霖, 王威, 陈敏文. 基于多物理场耦合的大气环境下碳钢点蚀演化及速率预测模型[J]. 材料导报, 2024, 38(19): 23060012-7.
[4] 范旭涵, 王炳楠, 汤世豪, 辛星, 裴妍. 磷酸镁水泥加固低液限粉土的pH和电导率响应与孔隙特征研究[J]. 材料导报, 2024, 38(16): 23080046-9.
[5] 冒海燕, 朱淼, 朱雪峰, 郭子怡, 廖成成, 何雪梅, 宋晓蕾. 基于刚果红的高分子染料制备及pH响应变色性能[J]. 材料导报, 2023, 37(9): 21040018-6.
[6] 陈昊翔, 李伟华. 自感知发光涂层在腐蚀监测中的研究进展[J]. 材料导报, 2023, 37(2): 21050151-10.
[7] 张瑜, 张泗达, 丁秀仿, 张瑞华, 陈东, 徐建富, 附青山. pH敏感型水凝胶在药物递送中的研究进展[J]. 材料导报, 2022, 36(Z1): 21120138-5.
[8] 张铖, 王玲, 姚燕, 史鑫宇. 逐层磨粉pH值法测定混凝土碳化深度的试验研究[J]. 材料导报, 2022, 36(7): 21030009-4.
[9] 周裕杰, 蔡高峰, 董建峰. 介质材料的有序微纳结构及其显色研究进展[J]. 材料导报, 2022, 36(20): 20100034-9.
[10] 严蛟, 邝旻翾, 胡宏林, 孔磊, 马慧玲, 张秀芹. 间苯二酚-甲醛基酚醛/碳气凝胶微观结构调控研究进展[J]. 材料导报, 2022, 36(12): 20090342-10.
[11] 雷颖, 葛冲冲, 冯瑾, 尚娇娇. pH响应型三维纳米纤维的构建及其性能研究[J]. 材料导报, 2021, 35(z2): 508-512.
[12] 李田雨, 刘小艳, 张玉梅, 熊传胜, 曹文凯, 李伟华. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8): 8042-8050.
[13] 刘国军, 张生义, 钟明月, 张桂霞, 王艳, 余大平. BEM含量对MAA-EA-MMA共聚物乳液的pH响应性研究[J]. 材料导报, 2019, 33(8): 1422-1426.
[14] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[15] 王翠萍, 牛泽明, 潘云炜, 陈悦超, 杨双, 郭毅慧, 卢勇, 韩佳甲, 刘兴军. Co-Ni-W三元系相图的实验测定与热力学计算[J]. 材料导报, 2019, 33(20): 3460-3466.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed