Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 427-433    https://doi.org/10.11896/j.issn.1005-023X.2018.03.013
     材料综述 |
电场诱导碳纳米管在聚合物中定向有序排列的研究进展
董怀斌,李长青,邹霞辉
装甲兵工程学院装备维修与再制造工程系,北京 100072
Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field
Huaibin DONG,Changqing LI,Xiahui ZOU
Department of Equipment Maintenance and Remanufacturing, Academy of Armored Force Engineering, Beijing 100072
下载:  全 文 ( PDF ) ( 1968KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

碳纳米管特殊的结构和优异的性能使之成为复合材料增强的首选填料,综述了电场条件下碳纳米管在聚合物中有序排列的研究进展。分析了电场类型、碳纳米管表面官能化、加电时间、碳纳米管尺寸和含量等因素对电场诱导碳纳米管有序排列的影响,讨论了定向有序排列的碳纳米管对复合材料的力学、电学和热学等性能的影响,分析了碳纳米管定向排列机理以及碳纳米管定向程度的表征方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董怀斌
李长青
邹霞辉
关键词:  电场诱导  碳纳米管  有序排列  聚合物复合材料    
Abstract: 

The special structure and excellent properties of carbon nanotubes make it the preferred filler for composites. This paper summarized the development of the studies on the orientation and alignment of CNTs in polymers induced by electric field. The factors which influence the orientation and alignment of CNTs in electric field are analyzed, such as electric field type, surface functionalization of CNTs, application time, CNTs size and content. The improvement of CNTs alignment reinforced composites in mechanical, electrical, and thermal properties is discussed. The mechanisms of orientation of CNTs and the characterization method of CNTs orientation degree were analyzed.

Key words:  electric field induced    carbon nanotubes    orientation and alignment    polymer composites
出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TB332  
作者简介:  董怀斌:男,1992年生,硕士研究生,研究方向为复合材料工艺性能 E-mail: 1015430234@qq.com|李长青:通信作者,男,1970年生,博士,研究员,博士研究生导师,研究方向为复合材料和表面工程 E-mail: 13311327344@163.com
引用本文:    
董怀斌,李长青,邹霞辉. 电场诱导碳纳米管在聚合物中定向有序排列的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 427-433.
Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field. Materials Reports, 2018, 32(3): 427-433.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.013  或          https://www.mater-rep.com/CN/Y2018/V32/I3/427
  
  
  
  
  
  
  
1 Hou L C, Liu H H, Wang N , et al. Preparation and characterization of carboxylic multi-walled carbon nanotubes/PA6 composites by solution mixing process[J]. Acta Material Composite Sinica, 2013,30(1):45(in Chinese).
1 候立晨, 刘海辉, 王宁 , 等. 功能化碳纳米管的制备及功能化碳纳米管/尼龙6复合纤维[J]. 复合材料学报, 2013,30(1):45.
2 Mannik J, Goldsmith B R, Kane A , et al. Chemically induced conductance switching in carbon nanotube circuits[J]. Physical Review Letters, 2006,97(1):1.
3 Ovak J P, Snow E S, Houser E J , et al. Nerve agent detection using networks of single-walled carbon nanotubes[J]. Applied Physics Letters, 2003,83(19):4026.
4 Liu Z, Cai W, He L , et al. In vivo biodistribution and highly efficient tumor targeting of carbon nanotubes in mice[J]. Nature Nanotechnology, 2007,2:47.
5 Zhou R, Wang P, Chang H C . Bacteria capture, concentration and detection by alternating current dielectrophoresis and self-assembly of dispersed single-wall carbon nanotubes[J]. Electrophoresis, 2006,27:1376.
6 Lu X, Chen Z . Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (
7 Hong S, Myung S . Nanotube electronics: A flexible approach to mobility[J]. Nature Nanotechnology, 2007,2(4):207.
8 Thostenson E T, Ren Z, Chou T W . Advances in the science and technology of carbon nanotubes and their composites: A review[J]. Composites Science and Technology, 2001,61:1899.
9 Chen Z, Yang Y, Wu Z , et al. Electric-fieldenhanced assembly of single-walled carbon nanotubes on a solid surface[J]. Journal of Physical Chemistry B, 2005,109:5473.
10 Hone J, Llaguno M C, Nemes N M , et al. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films[J]. Applied Physics Letters, 2000,77:666.
11 Hobbie E K, Wang H, Kim H , et al. Optical measurements of structure and orientation in sheared carbon-nanotube suspensions[J]. Review of Scientific Instruments, 2003,74:1244.
12 Valentini D, Puglia P, Carniato F , et al. Use of plasma fluorinated single-walled carbon nanotubes for the preparation of nanocomposites with epoxy matrix[J]. Composites Science and Technology, 2008,68:1008.
13 Zhang Hongyan . Preparation of unsaturated resin/graphite nanosheets conductive composites induced by electric field[D]. Xiamen:Huaqiao University, 2006(in Chinese).
13 张红艳 . 电场诱导制备不饱和树脂/纳米石墨微片复合导电材料[D]. 厦门:华侨大学, 2006.
14 Yamamoto K, Akita S, Nakayama Y . Orientation and purification of carbon nanotubes using ac electrophoresis[J]. Journal of Physics D—Applied Physics, 1998,31(8):34.
15 Lu Q, Liu S, Gan Z Y , et al. Directional technology of carbon nanotubes in various dispersants[J]. Nanotechnology and Precision Engineering, 2009,7(1):1(in Chinese).
15 吕强, 刘胜, 甘志银 , 等. 不同分散剂中碳纳米管的定向操控技术[J]. 纳米技术与精密工程, 2009,7(1):1.
16 Dai J F, Lu L, Wang Q , et al. The alignment of carbon nanotubes[J]. Journal of Synthetic Crystals, 2007,36(6):1355(in Chinese).
16 戴剑锋, 芦玲, 王青 , 等. 定向排列纳米碳管[J]. 人工晶体学报, 2007,36(6):1355.
17 Benedict L X, Louie S G, Cohen M L . Static polarizabilities of singlewall carbon nanotubes[J]. Physical Review B, 1995,52(11):8541.
18 Zhu S Q, Zhu W H, Ye H H . Controlled processing of carbon nanotubes[J]. Chenistry Bulletin, 2004,10:744(in Chinese).
18 朱世琴, 朱为宏, 叶红华 . 碳纳米管的定向操作[J]. 化学通报, 2004,10:744.
19 Martin C A , Sandler J K W, Windle A H, et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites[J]. Polymer, 2005,46:877.
20 Li Yuxin . Prepation and property of carbon nanotubes hierarchical composites by chemical/electrophoretic method[D]. Harbin:Harbin Institute of Technology, 2014(in Chinese).
20 李玉鑫 . 碳纳米管改性多尺度复合材料化学/电泳法制备及性能研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
21 Barrau S, Demont P, Peigny A , et al. DC and AC conductivity of carbon nanotubes-polyepoxy composites[J]. Macromolecules, 2003,36(14):5187.
22 Zheng Guodong, Zhang Qingjie, Deng Huoying , et al. Effect of different functionalized carbon nanotubes on mechanical properties of MWCNTs-carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2015,32(3):640(in Chinese).
22 郑国栋, 张清杰, 邓火英 , 等. 不同官能化碳纳米管对MWCNTs-碳纤维/环氧树脂复合材料力学性能的影响[J]. 复合材料学报, 2015,32(3):640.
23 Zhang Mingyan, Sui Shan, Chen Jinyu , et al. Study of properties of functional multi-walled carbon nanotubes/epoxy nanocomposites[J]. Transactions of China Electrotechnical Society, 2014,29(4):97(in Chinese).
23 张明艳, 隋珊, 陈金玉 , 等. 功能化碳纳米管/环氧树脂复合材料性能研究[J]. 电工技术学报, 2014,29(4):97.
24 Ma P C, Mo S Y, Tang B Z , et al. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites[J]. Carbon, 2010,48(6):1824.
25 Ma C, Zhang W, Zhu Y F , et al. Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field[J]. Carbon, 2008,46:706.
26 Rosca I D, Watari F, Uo M , et al. Oxidation of multiwalled carbon nanotubes by nitric acid[J]. Carbon, 2005,43(15):3124.
27 Marshall M W, Popa N S, Shapter J G . Measurement of functio-nalised carbon nanotube carboxylic acid groups using a simple chemical process[J]. Carbon, 2006,44(7):1137.
28 Koerner H, Jacobs D, Tomlin D W , et al. Tuning polymer nanocomposite morphology: AC electric field manipulation of epoxy-montmorillonite (clay) suspensions[J]. Advanced Materials, 2004,16(4):297.
29 Oliva-Aviles A I, Aviles F, Sosa V , et al. Dielectrophoretic mode-ling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields[J]. Carbon, 2014,69:342.
30 Chapkin W A , McNerny D Q, Aldridge M F, et al. Real-time assessment of carbon nanotube alignment in a polymer matrix under an applied electric field via polarized Raman spectroscopy[J]. Polymer Testing, 2016,56:29.
31 Park C, Wilkinson J, Banda S , et al. Aligned single-wall carbon nanotubes polymer composite using an electric field[J]. Journal of Polymer Science B, 2006,44:1751.
32 Marco M, Maurizio N, Luigi T , et al. The alignment of single walled carbon nanotubes in an epoxy resin by applying a DC electric field[J]. Carbon, 2012,50:2453.
33 Jiang Q, Wang X, Zhu Y T , et al. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites[J]. Composites:Part B, 2014,56:408.
34 Risi C L S, Hattenhauer I, Ramos A , et al. A contribution from dielectric analysis to the study of the formation of multi-wall carbon nanotubes percolated networks in epoxy resin under an electric field[J]. Materials Chemistry and Physics, 2015,160:289.
35 Murugesh A K, Uthayanan A, Lekakou C . Electrophoresis and orientation of multiple wall carbon nanotubes in polymer solution[J]. Applied Physics A, 2010,100:135.
36 Zhang R P, Zhu Y F, Ma C , et al. Alignment of carbon nanotubes in poly(methyl methacrylate) composites induced by electric field[J]. Journal of Nanoscience and Nanotechnology, 2009,9:2887.
37 Ymamoto K, Akita S, Nakayama Y . Orientation and purification of carbon nanotubes using ac electrophoresis[J]. Journal of Physics D:Applied Physics, 1998,31:34.
38 Ymamoto K, Akita S, Nakayama Y . Orientation of carbon nanotubes using electrophoresis[J]. Japanese Journal of Applied Phy-sics, 1996,35:917.
39 Hong C E, Lee J H, Kalappa P , et al. Effects of oxidative conditions on properties of multi-walled carbon nanotubes in polymer nanocomposites[J]. Composites Science and Technology, 2007,67(6):1027.
40 Senthil K M, Lee S H, Kim T Y , et al. DC electric field assisted alignment of carbon nanotubes on metal electrodes[J]. Solid-State Electronics, 2003,47:2075.
41 Ma P C, Siddiqui N A, Maroom G , et al. Dispersion and functiona-lization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A:Applied Science and Manufac-turing, 2010,41:1345.
42 Ma C, Liu H Y, Du X , et al. Fracture resistance, thermal and electrical properties of epoxy composites containing aligned carbon nanotubes by low magnetic field[J]. Composites Science and Technology, 2015,114:126.
43 Gupta P, Rajput M, Singla N , et al. Electric field and current assisted alignment of CNT inside polymer matrix and its effects on electrical and mechanical properties[J]. Polymer, 2016,89:119.
44 Wang Q, Dai J, Li W , et al. The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites[J]. Composites Science and Technology, 2008,68:1644.
45 Felisberto M, Arias D A, Ramos J A . Influence of filler alignment in the mechanical and electrical properties of carbon nanotubes/epoxy nanocomposites[J]. Physica B:Condensed Matter, 2012,407:3181.
46 Shafi U K, Jayaram R P, Jang-Kyo K , et al. Effects of carbon nanotube alignment onelectrical and mechanical properties of epoxy nanocomposites[J]. Composites Part A:Applied Science and Manufactu-ring, 2013,49:26.
47 Barrau S, Demont P, Peigny A , et al. DC and AC conductivity of carbon nanotubes-polyepoxy composites[J]. Macromolecules, 2003,36(14):5187.
48 Zhu Y F, Ma C, Zhang W , et al. Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field[J]. Journal of Applied Physics, 2009,105(5):431.
49 Bauhofer W, Kovacs J Z . A review and analysis of electrical percolation in carbon nanotube composites[J]. Composites Science and Technology, 2009,69:1486.
50 Prassea T, Cavaille J Y, Bauhoferb W , et al. Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment[J]. Composites Science and Technology, 2003,63:1835.
51 Ladani R B, Wu S, Kinloch A J , et al. Improving the toughness and electrical conductivity of epoxy nanocomposites by using aligned carbon nanofibres[J]. Composites Science and Technology, 2015,117:146.
52 Castellano J, Akin C, Giraldo G , et al. Electrokinetics of scalable, electric-field-assisted fabrication of vertically aligned carbon-nanotube/polymer composites[J]. Journal of Applied Physics, 2015,117:214306.
53 Laruani M M, Khamse E J, Asadollahi Z , et al. Effect of aligned carbon nanotubes on electrical conductivity behaviour in polycarbo-nate matrix[J]. Journal of Materials Science, 2012,35(3):305.
54 Fischer J E, Zhou W, Vavro J , et al. Magnetically aligned single wall carbon nanotube films:preferred orientation and anisotropic transport properties[J]. Journal of Applied Physics, 2003,93(4):2157.
[1] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[4] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[5] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[6] 张永芳, 文镜茜, 董丽虹, 王海斗, 郭伟玲, 黄艳斐. 基于碳纳米管及其复合材料的柔性应变传感器研究进展[J]. 材料导报, 2024, 38(14): 23050046-11.
[7] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[8] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[9] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[10] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[11] 陈点, 吕仕铭, 汪羽翎. 非共价键化学修饰碳纳米管的分散及其机理[J]. 材料导报, 2023, 37(17): 22040300-18.
[12] 夏伟, 陆松, 白二雷, 许金余, 杜宇航, 姚廒. 碳纳米管-碳纤维复合改性混凝土力学性能研究[J]. 材料导报, 2023, 37(16): 22010125-9.
[13] 朱建平, 张素娟, 高飞, 张文艳. CNTs@SiO2核壳结构纳米线对水泥力学性能及微观结构的影响[J]. 材料导报, 2023, 37(16): 22010225-6.
[14] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[15] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[5] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[6] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[7] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[8] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[9] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
[10] Hong DONG,Xiaojun SUN,Xin ZHANG,Doudou YANG,Xueliang WANG,Fengming ZHANG. Synthesis and Drug Delivery Properties of Nano Metal-organic Framework ZIF-90[J]. Materials Reports, 2018, 32(2): 189 -192 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed