Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 333-336    https://doi.org/10.11896/j.issn.1005-023X.2018.02.034
  物理   计算模拟 |材料 |
Si/Ti掺杂对AlCrCoFeNiMoTixSiy高熵合金力学性能影响的
第一性原理计算
2关键词 第一性原理 高熵合金 Si/Ti掺杂 力学性能
下载:  全 文 ( PDF ) ( 1599KB ) 
输出:  BibTeX | EndNote (RIS)      
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
第一性原理计算
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TG146.2+2  
基金资助: 山西省教育厅材料科学与工程重点扶持学科资助项目(2016-6);山西省青年科技研究基金面上项目(201601D202028);太原工业学院青年学术带头人支持计划(2016)
引用本文:    
第一性原理计算. Si/Ti掺杂对AlCrCoFeNiMoTixSiy高熵合金力学性能影响的[J]. 《材料导报》期刊社, 2018, 32(2): 333-336.
. . Materials Reports, 2018, 32(2): 333-336.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.034  或          https://www.mater-rep.com/CN/Y2018/V32/I2/333
Sample Al Cr Co Fe Ni Mo Ti Si
AlCrCoFeNiMoSi 1 1 1 1 1 1 0 1
AlCrCoFeNiMo-
Ti0.25Si0.75
1 1 1 1 1 1 0.25 0.75
AlCrCoFeNiMo-
Ti0.5Si0.5
1 1 1 1 1 1 0.5 0.5
AlCrCoFeNiMo-
Ti0.75Si0.25
1 1 1 1 1 1 0.75 0.25
AlCrCoFeNiMoTi 1 1 1 1 1 1 1 0
表1  高熵合金成分设计
Lattice
constant
nm
Density
g/cm3
Cohesive
energy
eV/atom
AlCrCoFeNiMoSi 0.279 3 8.197 3 -123.80
AlCrCoFeNiMoTi0.25Si0.75 0.279 9 8.254 1 -129.77
AlCrCoFeNiMoTi0.5Si0.5 0.279 9 8.361 2 -139.64
AlCrCoFeNiMoTi0.75Si0.25 0.280 4 8.423 0 -152.87
AlCrCoFeNiMoTi 0.279 0 8.661 1 -169.98
表2  高熵合金晶格参数、密度以及结合能
C11/GPa C12/GPa C44/GPa
AlCrCoFeNiMoSi 73.32 119.30 87.20
AlCrCoFeNiMoTi0.25Si0.75 79.48 121.79 92.10
AlCrCoFeNiMoTi0.5Si0.5 96.58 125.02 103.48
AlCrCoFeNiMoTi0.75Si0.25 88.20 122.80 104.27
AlCrCoFeNiMoTi 88.86 134.91 114.61
表3  高熵合金弹性常数Cij
E/GPa G/GPa B/GPa G/B ν
AlCrCoFeNiMoSi -74.46 -25.98 103.98 -0.25 0.62
AlCrCoFeNiMoTi0.25Si0.75 -67.91 -16.94 107.69 -0.16 0.61
AlCrCoFeNiMoTi0.5Si0.5 -44.48 5.82 115.54 0.05 0.56
AlCrCoFeNiMoTi0.75Si0.25 -54.74 -0.97 111.27 -0.01 0.58
AlCrCoFeNiMoTi -73.82 -11.42 119.56 -0.10 0.60
表4  高熵合金的杨氏模量E、剪切模量G、体积模量B、G/B和泊松比ν
AlCrCoFeNiMoTixSiy
x=0,
y=1
x=0.25,
y=0.75
x=0.5,
y=0.5
x=0.75,
y=0.25
x=1,
y=0
Average
hardness
The original sample after melting 41.5 45.5 47.0 46.4 45.6 45.2
Annealed sample 50.5 52.0 48.6 52.5 51.5 51
表5  高熵合金硬度测试结果(HRC)
图1  熔炼后高熵合金杨氏模量E、剪切模量G、泊松比v及洛氏硬度
图2  熔炼后AlCrCoFeNiMoTixSiy高熵合金的微观组织: (a)x=0,y=1;(b)x=0.25,y=0.75;(c)x=0.5,y=0.5;(d)x=0.75,y=0.25;(e)x=1,y=0
1 Zhou Y J, Zhang Y, Wang Y L , et al. Microstructure characterization of Alx(TiVCrMnFeCoNiCu)100-x high-entropy alloy system with multi-principal elements[J]. Rare Metal Materials and Engineering, 2007,36(12):2136(in Chinese).
2 周云军, 张勇, 王艳丽 , 等. 多组元Alx(TiVCrMnFeCoNiCu)100-x高熵合金系微观组织研究[J]. 稀有金属材料与工程, 2007,36(12):2136.
3 Li K . Microstructure and hydrogen storage properties of the lightweight and containing magnesium high entropy alloys[D]. Lanzhou: Lanzhou University of Technology, 2013(in Chinese).
4 李凯 . 轻质及含镁高熵合金的微观组织及储氢性能研究[D]. 兰州:兰州理工大学, 2013.
5 Yang X, Zhang Y, Liaw P K . Microstructure and compressive pro-perties of NbTiVTaAlx high entropy alloys[J]. Procedia Enginee-ring, 2012,36(6):292.
6 Yu Y, Xie F Q, Zhang T B , et al. Microstructure control and corrosion properties of AlCoCrFeNiTi0.5 high-entropy alloy[J]. Rare Metal Materials and Engineering, 2012,41(5):862(in Chinese).
7 于源, 谢发勤, 张铁邦 , 等. AlCoCrFeNiTi0.5高熵合金的组织控制和腐蚀性能[J]. 稀有金属材料与工程, 2012,41(5):862.
8 Varalakshmi S, Kamaraj M, Murty B S . Synjournal and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying[J]. Journal of Alloys and Compounds, 2008,460(1-2):253.
9 Wu J M, Lin S J, Yeh J W , et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content[J]. Wear, 2006,261(5-6):513.
10 7 Yang J Y,Zhou Y J,Zhang Y,et al. Research progress of high-entropy alloys with multiprincipal components[J].Chinese Materials Science Technology and Equipment, 2007(6):16(in Chinese).
11 阳隽觎, 周云军, 张勇 , 等. 多组元高熵合金的研究现状及前景展望[J].中国材料科技与制备, 2007(6):16.
12 Zhang Y, Zuo T T, Tang Z , et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014,61(8):1.
13 Yang X M . First-principles study on structure and properties of Mg-Al based strengthening phase and solid solution[D]. Taiyuan: North University of China, 2014(in Chinese).
14 杨晓敏 . Mg-Al基强化相及固溶体结构和性能的第一性原理研究[D]. 太原:中北大学, 2014.
15 Ju S P, Huang H H, Wu T Y , et al. Investigation of the local structural rearrangement of Mg67Zn28Ca5 bulk metallic glasses during tensile deformation:A molecular dynamics study[J]. Computational Materials Science, 2015,96:56.
16 Jung G S, Zhao Q, Buehler M J . Molecular mechanics of polycrystalline graphene with enhanced fracture toughness[J]. Extreme Mechanics Letters, 2015,2(1):52.
17 Hizhnyakov V, Haas M , Shelkan, et al. Theory and MD simulations of intrinsic localized modes and defect formation in solids[J]. Physica Scripta, 2013,89(4):044003.
18 Wang L X, Yao S, Wen B . First-principle studies of AlCoCrCuxFeNi high entropy alloys with different mole fractions of Cu[J]. Materials Review, 2014,28(s2):159(in Chinese).
19 王兰馨, 姚山, 温斌 . 第一性原理计算Fe元素含量对高熵合金AlCoCrCuFexNi的影响[J]. 材料导报, 2014,28(专辑24):159.
20 Qiu Y, Wang H P, Kong Y , et al. Progress in first-principles calculations and experimental observations of the interface in cemented carbides[J]. Materials Review A: Review Papers, 2016,30(5):136(in Chinese).
21 邱玥, 王辉平, 孔毅 , 等. 硬质合金界面的实验观测与第一性原理计算研究进展[J]. 材料导报:综述篇, 2016,30(5):136.
22 Jiang Y . First principles computation methods and applications for metal/metal-oxide interfaces[J]. Chinese Journal of Nature, 2015,37(4):261(in Chinese).
23 江勇 . 金属与金属氧化物界面第一性原理计算研究方法及其应用[J]. 自然杂志, 2015,37(4):261.
24 Wang C Y, Wang Z Q, Meng Q Y . Comparative study of the first-principles and empirical potential simulation of vacancies in silicon[J]. Acta Physica Sinica, 2010,59(5):3370(in Chinese).
25 王超营, 王振清, 孟庆元 . 空位的第一性原理及经验势函数的对比研究[J]. 物理学报, 2010,59(5):3370.
26 Li Y, Zhang W P, Yang Q . The first principles calculation of cubic boron nitride electronic structure and optical properties[J]. Materials Review, 2011,25(s2):251(in Chinese).
27 李耀, 张卫平, 杨强 . 立方氮化硼电子结构和光学性质的第一性原理计算[J]. 材料导报, 2011,25(专辑18):251.
28 Han P D, Bai J G, Li H F . First principle investigation on the alloying effect and Mg/Li interface structure[J]. Journal of Taiyuan University of Technology, 2012,43(3):251(in Chinese).
29 韩培德, 白晋纲, 李洪飞 . Mg-Li合金界面结构及合金化效应的第一性原理研究[J]. 太原理工大学学报, 2012,43(3):251.
30 Nakamura K, Ohnuma T, Ogata T . First-principles study of structure,vacancy formation,and strength of bcc Fe/V4C3 interface[J]. Journal of Materials Science, 2011,46(12):4206.
31 Fang L H, Wang L, Gong J H , et al. First-principles study of bulk and (001) surface of TiC[J]. Transactions of Nonferrous Metals Society of China, 2010,20(5):857.
32 Fang C M, Van Huis M A, Sluiter M H F , et al. Stability,structure and electronic properties of γ-Fe23C6 from first-principles theory[J]. Acta Materialia, 2010,58(8):2968.
33 Fu C L, Wang X, Ye Y Y , et al. Phase stability, bonding mechanism,and elastic constants of Mo5Si3 by first-principles calculation[J]. Intermetallics, 1999,7(2):179.
34 Gao L, Zhou J, Sun Z M , et al. First-principles calculations of the β-Mg7Gd precipitate in Mg-Gd binary alloys[J]. Chinese Science Bulletin, 2011,56(11):1142.
35 4 Mattesini M, Ahuja R, Johansson B . Cubic Hf3N4 and Zr3N4: A class of hard materials[J]. Physical Review B, 2003,68(18):184108.
[1] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[2] 康靓, 王堃, 敬学锐, 王煜烨, 王世伟, 孙鑫, 肖旅, 周海涛. 镁基材料中Mg2Si相调控技术的研究进展[J]. 材料导报, 2022, 36(22): 22030308-7.
[3] 王策, 马爱斌, 刘欢, 黄河, 孙甲鹏, 杨振权, 江静华. LPSO相增强镁稀土合金耐热性能研究进展[J]. 材料导报, 2019, 33(19): 3298-3305.
[4] 程鹏, 陈云贵, 丁武成, 王春明. 热挤压Mg-3Sn-1Zn-xCu合金的显微组织与力学性能[J]. 材料导报, 2018, 32(20): 3562-3565.
[5] 唐昌平, 左国良, 刘文辉, 朱美韵, 李志云, 李权, 刘筱, 卢立伟. 挤压-T5态Mg-8Gd-4Y-Nd-Zr合金的动态冲击行为[J]. 《材料导报》期刊社, 2018, 32(14): 2437-2441.
[6] 袁秋红,周国华,廖 琳. 石墨烯纳米片/AZ91镁基复合材料的显微组织与力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1663-1667.
[7] 徐志超, 冯中学, 史庆南, 杨应湘, 王效琪, 起华荣. 定向凝固制备Mg98.5Zn0.5Y1合金中LPSO相的结构及其对合金电磁屏蔽性能的影响[J]. 材料导报, 2018, 32(6): 865-869.
[8] 徐志超, 冯中学, 史庆南, 杨应湘. Mg-Zn-Y合金中14H-LPSO相与W相的电子结构与弹性性能的第一性原理计算[J]. 材料导报, 2018, 32(6): 1026-1031.
[9] 唐昌平, 李国栋, 李志云, 孙玹琪. 铸造Mg-Gd-Y-Nd-Zr合金在时效过程中的组织与性能演变[J]. 《材料导报》期刊社, 2018, 32(4): 574-578.
[10] 朱利敏, 李全安. Mg-8.08Gd-2.41Sm-0.3Zr合金热压缩变形及热加工图[J]. 《材料导报》期刊社, 2018, 32(4): 593-597.
[11] 孙翠翠, 周吉学, 赵东清, 马百常, 杨院生. Sn对镁及镁合金显微组织和性能影响的研究现状及展望*[J]. 《材料导报》期刊社, 2017, 31(19): 60-65.
[12] 董鹏, 陈鼎, 陈振华, 章凯. 新型Mg-8Li-5Al-5Ca合金的微观组织、力学及耐腐蚀性能*[J]. 《材料导报》期刊社, 2017, 31(18): 64-71.
[13] 唐昌平, 李国栋, 刘文辉, 陈宇强, 刘筱, 李方伟. 析出相对Mg-Gd-Y-Nd-Zr合金室温压缩行为的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 103-106.
[14] 蒲治军,陈东杰,张奎,李兴刚,李永军,马鸣龙,石国梁,袁家伟,李蒙. 关于镁合金中长周期有序结构的研究综述*[J]. 《材料导报》期刊社, 2017, 31(7): 79-82.
[15] 叶俊华,汤爱涛,马仕达,陈巧旺,王玉容,徐安莲. 搅拌摩擦焊接Mg-6Al-1Sn合金组织与性能研究*[J]. 材料导报编辑部, 2017, 31(22): 79-84.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed