Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 322-326    https://doi.org/10.11896/j.issn.1005-023X.2018.02.032
  物理   计算模拟 |材料 |
三维局域共振型声子晶体低频带隙特性研究
高南沙,侯宏
西北工业大学航海学院,西安 710072
Low Frequency Bandgap Characteristics of Three-dimensional Local Resonance Phononic Crystal
Nansha GAO,Hong HOU
School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 5460KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

提出了一种三维局域共振型声子晶体结构,通过有限元仿真分析了该结构的低频带隙特性和多重振动耦合机理,继而研究了几何参数的影响因素。结果表明,该结构可以打开50 Hz以下的超低频带隙,其中基体材料和圆柱谐振子的振动耦合是带隙打开的关键,圆柱谐振子的下表面的振动位移越大,越容易打开带隙。中间层斜条部分密度对于带隙的下边界几乎没有影响,但是可使带隙的上边界往高频移动,带隙宽度变大。导致带隙变化的关键因素是中间层S2部分的长度和S1部分的角度。本工作丰富了三维声子晶体低频结构设计和等效模型研究,在工程实践中具有一定的指导价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高南沙
侯宏
关键词:  声子晶体  低频带隙  有限元分析  多重振动耦合    
Abstract: 

A kind of three-dimensional local resonance phononic crystal structure was proposed. By FEM calculation, low frequency bandgap characteristic, multiple vibration coupling mechanism and corresponding influence factors of geometric parameters were analyzed. Results show that this kind of structure can open ultra-low frequency bandgap under 50 Hz and critical factor is the vibration coupling effect between the matrix material and cylindrical harmonic oscillator. The more vibration displacement of lower surface on cylindrical harmonic oscillator is, the wider bandgap is. Density of middle oblique bar has no effect on the lower edge of bandgap, but makes the upper edge of bandgap move to the higher frequency range, and hence results in the change of bandgap. Length of middle oblique S2 section and angle of S1 section are the most important factor in bandgap. This study enriches the design and the equivalent model of three-dimensional phononic crystal frequency structure, which possesses a certain guiding value in engineering application.

Key words:  phononic crystal    low frequency bandgap    finite element analysis    multiple vibration coupling
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TB533  
  TB532  
  TU112.3  
基金资助: 国家自然科学基金面上项目(11474230);中央高校基本科研业务费(3102016QD056)
引用本文:    
高南沙,侯宏. 三维局域共振型声子晶体低频带隙特性研究[J]. 《材料导报》期刊社, 2018, 32(2): 322-326.
Nansha GAO,Hong HOU. Low Frequency Bandgap Characteristics of Three-dimensional Local Resonance Phononic Crystal. Materials Reports, 2018, 32(2): 322-326.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.032  或          https://www.mater-rep.com/CN/Y2018/V32/I2/322
Materials Density/(kg/m3) Young’s modulus/(1010 Pa) Shear modulus/(1010 Pa) Poisson’s ratio
Lead 11 600 4.08 1.49 0.369
Epoxy resin 1 180 0.435 0.159 0.368
Silicon rubber 1 300 1.175×10-5 4×10-6 0.469
表1  材料参数
图1  (a)、(b)三维局域共振型声子晶体结构;(c)中间层斜条部分平面图,(d)斜条部分的局部放大图
图2  (a)三维局域共振型声子晶体的能带结构;(b)能带结构的局部放大图(低于80 Hz)
图3  A点的模态振型图(电子版为彩图)
图4  B点的模态振型图(电子版为彩图)
图5  C点的模态振型图(电子版为彩图)
图6  D点的模态振型图(电子版为彩图)
图7  S0点的模态振型图(电子版为彩图)
图8  (a)圆柱谐振子上、下表面位移对比图;(b)局域共振单元的简化模型(电子版为彩图)
图9  中间层斜条(a)S1的角度、(b)S2的角度、(c)S1的长度、(d)S2的长度、(e)数目、(f)厚度和(g)密度的变化对带隙的影响
1 Martínez-Sala R, Sancho J, Sánchez J V , et al. Sound attenuation by sculpture[J]. Nature, 1995,378(6554):241.
2 James R, Woodley S M, Dyer C M , et al. Sonic bands, bandgaps, and defect states in layered structures: Theory and experiment[J]. The Journal of the Acoustic Society of America, 1995,97(4):2041.
3 Kushwaha M S, Djafari-Rouhani B, Dobrzynski L . Sound isolation from cubic arrays of air bubbles in water[J]. Physics Letters A, 1998,248(2):252.
4 4 温熙森, 温激鸿, 郁殿龙 , 等. 声子晶体[M]. 北京: 国防工业出版社, 2009.
5 Liu Z, Zhang X, Mao Y , et al. Locally resonant sonic materials[J]. Science, 2000,289(5485):1734.
6 Liu Z, Chan C T, Sheng P . Three-component elastic wave band-gap material[J]. Physical Review B, 2002,65(16):165116.
7 Liu Z, Chan C T, Sheng P . Analytic model of phononic crystals with local resonances[J]. Physical Review B, 2005,71(1):014103.
8 Hirsekorn M, Delsanto P P, Batra N K , et al. Modelling and simulation of acoustic wave propagation in locally resonant sonic materials[J]. Ultrasonics, 2004,42(1-9):231.
9 Wang G, Shao L H, Liu Y Z , et al. Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals[J]. Chinese Physics, 2006,15(8):1843.
10 Gan N, Wu J H, Yu L . Research on band gaps in two-dimensional phononic crystal with two resonators[J]. Ultrasonics, 2015,56:287.
11 Qi Pengshan, Du Jun, Jiang Jiulong , et al. Study of the phononic crystals bandgap properties of double local resonance mechanism[J]. Materials Review B:Research Papers, 2016,30(5):144(in Chinese).
12 祁鹏山, 杜军, 姜久龙 , 等. 双局域共振机制声子晶体带隙特性研究[J]. 材料导报:研究篇, 2016,30(5):144.
[1] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[2] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[3] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[4] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[5] 陈俊豪, 曾晓辉, 谢友均, 龙广成, 唐卓. 多重谐振水泥基声子晶体带隙特性研究[J]. 材料导报, 2024, 38(12): 22080126-9.
[6] 陈守东, 陈敬琪, 李杰, 孙建, 卢日环. 复合成形轧制铜极薄带变形局部化的晶体塑性有限元模拟[J]. 材料导报, 2023, 37(2): 21050240-10.
[7] 陈守东, 卢日环, 孙建, 李杰. 异步冷轧少晶铜薄带局部变形的CP-FE模拟[J]. 材料导报, 2023, 37(14): 21120214-10.
[8] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[9] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[10] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[11] 余坤, 文立伟, 宦华松, 唐鹏刚. 缝合增强复合材料帽型加筋壁板界面拉脱性能[J]. 材料导报, 2021, 35(24): 24189-24194.
[12] 陈宗平, 许瑞天, 梁厚燃. 高温喷水冷却后再生卵石混凝土应力-应变本构关系及有限元分析[J]. 材料导报, 2021, 35(13): 13032-13040.
[13] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[14] 赵宇航, 高莹, 王永旺, 陈东, 张云峰. 粉煤灰制硅酸盐防腐砖在复杂工况下的性能退化研究[J]. 材料导报, 2020, 34(Z2): 304-307.
[15] 陈龙飞, 游世辉, 赵小英. 二维声子晶体薄板隔声特性研究[J]. 材料导报, 2020, 34(Z1): 90-93.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed