Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 105-109    https://doi.org/10.11896/j.issn.1005-023X.2017.06.021
  材料研究 |
前驱体对含Cu低碳钢I&Q&P处理后组织性能的影响
陈连生, 曹鸿梓, 田亚强, 宋进英, 魏英立, 郑小平
华北理工大学教育部现代冶金技术重点实验室, 唐山 063009
Influence of Precursor on Microstructure and Mechanical Property of a Cu
Bearing Low-carbon Steel by I&Q&P Treatment
CHEN Liansheng, CAO Hongzi, TIAN Yaqiang, SONG Jinying,
WEI Yingli, ZHENG Xiaoping
Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, North China University of
Science and Technology, Tangshan 063009
下载:  全 文 ( PDF ) ( 2165KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用I&Q&P工艺和EPMA、SEM和XRD等手段,研究了3种前驱体对含Cu低碳钢残余奥氏体含量及力学性能的影响。结果表明,双相区保温初期试验钢奥氏体长大由C配分控制,后期由合金元素Mn、Cu配分控制;双相区保温奥氏体化后,双相区配分后形成弥散分布的局部高浓度Mn、Cu区域仍保留富集效果,在随后的淬火-碳配分阶段易于形成残余奥氏体。经I&Q&P处理后,前驱体为P+F的钢室温组织中马氏体板条较粗,原始奥氏体晶界并不明显;前驱体为F+M钢得到的马氏体板条有序细密;前驱体为M的钢室温组织中马氏体板条更加细密。其中,前驱体组织为M的钢中残余奥氏体量最高,延伸率为24.1%,强塑积可达25 338 MPa·%,综合性能最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈连生
曹鸿梓
田亚强
宋进英
魏英立
郑小平
关键词:  含Cu低碳钢  I&  Q&  P工艺  前驱体  残余奥氏体  性能    
Abstract: Effect of different precursor microstructure on retained austenite and mechanical properties of a Cu bearing low-carbon steel was studied by means of scanning electron microscopy (SEM),electron microprobe analysis (EPMA) and X-ray diffraction (XRD). The results showed that austenite nucleation and growth were controlled by C partition in initial stages and Mn, Cu partition in the later stages of intercritical annealing. The effect of Mn, Cu enrichment formed in the intercritical partitioning was retained after austenitizing. The rigion could form retained austenite easily in the quenching and C partitioning stages subsequent. After I&Q&P heat treatment, the steel with ferrite + pearlite (P+F) precursor could obtain the coarser martensite lath, but the original austenite grain boundary was not obvious. The steel with ferrite + martensite (P+M) precursor could obtain the orderd martensite lath and the lath was fine; While the martensite (M) precursor steel could obtain a microstructure of more refined martensite lath. After I&Q&P heat treatment, the steel with M precursor had the most volume fraction of retained austenite. The elongation of this kind of steel was up to 24.1%, and thus the product of strength and elongation was 25 338 MPa·%, the mechanical properties was the best.
Key words:  Cu bearing low-carbon steel    I&    Q&    P process    precursor microstructure    retained austenite    mechanical properties
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51574107);河北省自然科学基金(E2016209048);河北省教育厅科研项目(QN2016185);唐山市科技创新团队培养计划(15130202C);唐山市科学技术研究项目(14130228B);华北理工大学研究生创新项目(2016S22)
通讯作者:  田亚强:男,1980年生,教授,从事金属材料及塑性成形工艺研究,E-mail:tyqwylfive@163.com   
作者简介:  陈连生:男,1968年生,教授,从事金属材料及塑性成形工艺研究,E-mail:kyckfk@ncst.edu.cn
引用本文:    
陈连生, 曹鸿梓, 田亚强, 宋进英, 魏英立, 郑小平. 前驱体对含Cu低碳钢I&Q&P处理后组织性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 105-109.
CHEN Liansheng, CAO Hongzi, TIAN Yaqiang, SONG Jinying,
WEI Yingli, ZHENG Xiaoping. Influence of Precursor on Microstructure and Mechanical Property of a Cu
Bearing Low-carbon Steel by I&Q&P Treatment. Materials Reports, 2017, 31(6): 105-109.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.021  或          https://www.mater-rep.com/CN/Y2017/V31/I6/105
1 Kang Yonglin. Light weight vehicle, advanced high strength steel and energy-saving and emission reduction[J]. Iron Steel,2008,43(6):1(in Chinese).
康永林. 汽车轻量化先进高强钢与节能减排[J]. 钢铁,2008,43(6):1.
2 Jiang Haitao, Tang Di, Mi Zhenli. Latest progress in development and application of advanced high strength steels for automobiles[J]. J Iron Steel Res,2007,19(8):1(in Chinese).
江海涛, 唐荻, 米振莉. 汽车用先进高强度钢的开发及应用进展[J]. 钢铁研究学报,2007,19(8):1.
3 Lei Xiaowei, Gao Wanfu, Feng Yaorong, et al. Influence of quen-ching-partitioning-tempering process on microstructure and properties of 20SiMn2MoV steel[J]. Trans Mater Heat Treatment,2013,34(11):138(in Chinese).
雷晓维, 高万夫, 冯耀荣, 等. Q-P-T 工艺对20SiMn2MoV钢组织与性能的影响[J]. 材料热处理学报,2013,34(11):138.
4 Ren Yongqiang, Xie Zhenjia, Shang Chengjia. Regulation of retained austenite and its effect on the mechanical properties of low carbon steel[J]. Acta Metall Sin,2012,48(9):1074(in Chinese).
任勇强, 谢振家, 尚成嘉. 低碳钢中残余奥氏体的调控及对力学性能的影响[J]. 金属学报,2012,48(9):1074.
5 Ren Yongqiang, Xie Zhenjia, Shang Chengjia. Microstructure regulation and mechanical properties of low-carbon multiphase steels[J].J University of Science and Technology Beijing,2013(5):592(in Chinese).
任勇强, 谢振家, 尚成嘉. 低碳多相钢的组织调控与力学性能[J]. 北京科技大学学报, 2013(5):592.
6 Chen Liansheng, Zhang Jianyang, Tian Yaqiang, et al. Effect of Mn pre-partitioning on C partitioning and retained austenite of Q&P steels[J]. Acta Metall Sin,2015(5):527(in Chinese).
陈连生, 张健杨, 田亚强, 等. 预先Mn配分处理对Q&P钢中C配分及残余奥氏体的影响[J].金属学报,2015(5):527
7 Tian Yaqiang, Zhang Hongjun, Chen Liansheng, et al. Effect of alloy elements partitioning behavior on retained austenite and mechanical property in low carbon high strength steel[J]. Acta Metall Sin,2014(5):531(in Chinese).
田亚强, 张宏军, 陈连生, 等. 低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响[J].金属学报,2014(5):531.
8 Jing Cainian, Wang Zuocheng. The action of alloy element in transformation-induced plasticity steels[J]. Mater Rev,2004,18(11):36(in Chinese).
景财年, 王作成. 合金元素在相变诱发塑性钢中的作用[J]. 材料导报,2004,18(11):36.
9 Yang Caifu, Liu Yizhi, Chai Feng, et al. Strength and toughness of austenite decomposition products in high strength Cu-bearing steel during continuous cooling[J].J University of Science and Technology Beijing,2014,36(4):438(in Chinese).
杨才福, 刘翊之, 柴锋, 等. 高强度含铜钢奥氏体连续冷却转变产物的强韧性[J]. 北京科技大学学报,2014,36(4):438.
10 Ouyang Huangsheng, Pan Tao, Su Hang, et al. Effect of copper on strength and cryogenic toughness of 9Ni steel[J]. Chin J Mater Res,2012,26(3):215(in Chinese).
欧阳凰生, 潘涛, 苏航, 等. Cu对9Ni钢强度和低温韧性的影响[J]. 材料研究学报,2012,26(3):215.
11 Liu Qingdong. Atom probe tomography study on copper precipitaion strengthening and reverse austenite toughening in HSLA ferritic steel[D]. Shanghai: Shanghai University,2012(in Chinese).
刘庆冬. HSLA铁素体钢中Cu析出强化和奥氏体韧化的原子探针层析技术研究[D]. 上海:上海大学,2012.
12 Tadashi Kasuya, Takahiro Izawa, Tomoyuki Kakeshita. Hydrogen evolution of Cu precipitation 780 MPa grade steel HAZ with conside-ration of its cold cracking susceptibility[J]. Welding World,2014,11:113
13 Bagliani E P, Santofimia M J, Zhao L, et al. Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel[J]. Mater Sci Eng A,2013,559(3):486.
14 Santofimia M J, Nguyen-Minh T, Zhao L, et al. New low carbon Q&P steels containing film-like intercritical ferrite[J]. Mater Sci Eng A,2010,527(23):6429.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[3] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[4] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[5] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[10] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[11] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[12] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[13] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[14] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[15] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed