Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 35-38    https://doi.org/10.11896/j.issn.1005-023X.2017.020.008
  材料研究 |
Ni-金刚石复合涂层的结构优化及基础磨削性能*
周阳, 金秋, 龚小玲, 聂朝胤
西南大学材料与能源学部,重庆 400715
Structure Optimization and Basic Grinding Performance of Nickel-diamond Composite Coating
ZHOU Yang, JIN Qiu, GONG Xiaoling, NIE Chaoyin
Faculty of Materials and Energy, Southwest University, Chongqing 400715
下载:  全 文 ( PDF ) ( 2613KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用电沉积技术在304不锈钢基体上制备了Ni-金刚石复合涂层。通过金刚石掺入量、加厚镀时间优化了金刚石复合涂层结构,利用球-盘式摩擦磨损试验仪研究了优化后的金刚石复合涂层对不同材料偶件(GCr15、SiC、304不锈钢)的磨削性能。结果表明:金刚石掺入量为1.5 g/L时,金刚石上砂均匀且密集;加厚镀15 min时,金刚石埋入率约为2/3,附着强度较好,适合磨削加工;GCr15、SiC、304不锈钢3种材料偶件的磨损体积依次减小,分别为:0.353 76 mm3、0.315 90 mm3、0.194 01 mm3,金刚石复合涂层对GCr15有较好的磨削性能;金刚石复合涂层磨削GCr15、SiC、304不锈钢均发生了磨粒磨损,此外,GCr15还发生了微弱的化学磨损,不锈钢发生了较明显的化学磨损和粘着磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周阳
金秋
龚小玲
聂朝胤
关键词:  Ni-金刚石复合涂层  电沉积  不同偶件  磨削性能    
Abstract: Ni-diamond composite coating was prepared on 304 stainless steel substrates by electrodeposition technique. The diamond composite coating structure was optimized by adding the amount of diamond and thickening time. Grinding performance of the optimized diamond composite coating sliding against different counterparts (GCr15, SiC, 304 stainless steel) was evaluated by ball disc friction and wear tester. Results show that the diamond is uniform and dense when diamond concentration is 1.5 g/L. When the thickening time is 15 min, the embedding ratio of diamond is about 2/3, and the adhesion strength is better, which is suitable for the grinding process. The wear volume of GCr15, SiC, 304 stainless steel are decreased in turn, respectively, as follows: 0.353 76 mm3, 0.315 90 mm3, 0.194 01 mm3, and the diamond composite coating have better grinding performance for GCr15. Diamond composite coating grinding SiC, GCr15, 304 stainless steel have occurred abrasive wear, in addition, GCr15 also has a weak chemical wear, stainless steel has a serious chemical wear and adhesive wear.
Key words:  nickel-diamond composite coating    electrodeposition    different coupling    grinding performance
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TG174  
  TG441  
基金资助: *国家自然科学基金 (51271153)
作者简介:  周阳:男,1993年生,硕士研究生,研究方向为复合涂层的制备与性能 E-mail:1042423256@qq.com 聂朝胤:通讯作者,男,1964年生,博士,教授,博士研究生导师,研究方向为功能薄膜材料与材料表面改性 E-mail:niecy@swu.edu.cn
引用本文:    
周阳, 金秋, 龚小玲, 聂朝胤. Ni-金刚石复合涂层的结构优化及基础磨削性能*[J]. 《材料导报》期刊社, 2017, 31(20): 35-38.
ZHOU Yang, JIN Qiu, GONG Xiaoling, NIE Chaoyin. Structure Optimization and Basic Grinding Performance of Nickel-diamond Composite Coating. Materials Reports, 2017, 31(20): 35-38.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.008  或          https://www.mater-rep.com/CN/Y2017/V31/I20/35
1 Wu Ying. Application status and improved research of electroplated diamond tools [J]. Hot Work Technol, 2015,44(18):18(in Chinese).
吴颖. 电镀金刚石工具的应用现状及改进研究[J]. 热加工工艺, 2015,44(18):18.
2 Liu Yongqi. Current research status and development of electroplated diamond wire saw [J]. Superhard Mater Eng, 2015,27(1):48(in Chinese).
刘永奇. 电镀金刚石线锯的研究现状与发展[J]. 超硬材料工程, 2015,27(1):48.
3 Suzuki T, Konno T. Improvement in tool life of electroplated diamond tools by Ni-based carbon nanotube composite coatings[J]. Precis Eng, 2014,38(3):659.
4 Lane B M, Dow T A, Scattergood R. Thermo-chemical wear model and worn tool shapes for single-crystal diamond tools cutting steel[J]. Wear, 2013,300(1-2):216.
5 Li Zhanjie, Gong Hu, Tong Weiping, et al. Experimental study of diamond turnability of iron nitride [J]. J Tianjin University, 2014(9):785(in Chinese).
李占杰, 宫虎, 佟伟平,等. 氮化铁材料的金刚石可切削性实验研究[J]. 天津大学学报, 2014(9):785.
6 Dai Pengfei, Study on diamond turning of steel alloys [J]. Tianjin: Tianjin University,2009(in Chinese).
代腾飞. 金刚石刀具车削钢铁材料的研究[D]. 天津: 天津大学, 2009.
7 Pavese M, Fino P, Ugues D, et al. High cycle fatigue study of me-tal-ceramic co-continuous composites [J]. Scr Mater, 2006,55(12):1135.
8 Chen Weiping, Yang Shaofeng, Han Mengyan. Research development of ceramic/Fe-based alloy composites [J]. Chin J Nonferrous Met, 2010,20(2):257(in Chinese).
陈维平, 杨少锋, 韩孟岩. 陶瓷/铁基合金复合材料的研究进展[J]. 中国有色金属学报, 2010,20(2):257.
9 Cao Lianjing, Sun Yuli, Zuo Dunwen, et al. Development on fixed abrasive diamond wire saw with electroplating method[J]. Diamond Abrasives Eng, 2013,33(1):53(in Chinese).
曹连静, 孙玉利, 左敦稳,等. 金刚石线锯的复合电镀工艺研究进展[J]. 金刚石与磨料磨具工程, 2013,33(1):53.
10Feng Canbo, Xie Guizhi, Sheng Xiaomin, et al. Process test research on stainless steel in ultra-high speed grinding [J]. China Mech Eng, 2013,24(3):322(in Chinese).
冯灿波, 谢桂芝, 盛晓敏,等. 不锈钢超高速磨削试验研究[J]. 中国机械工程, 2013,24(3):322.
11Huang Shaonan, Zhou Ming. Ultrasonic vibration cutting of stainless steel with polycrystalline diamond tools[J]. Tool Eng, 2008,42(5):6(in Chinese).
黄劭楠, 周明. 聚晶金刚石刀具振动切削不锈钢技术研究[J]. 工具技术, 2008,42(5):6.
12Guo Xiaoguang, Zhai Changheng, Jin Zhuji, et al. The study of diamond graphitization under the action of iron-based catalyst [J]. J Mech Eng, 2015,51(17):162(in Chinese).13郭晓光, 翟昌恒, 金洙吉,等. 铁基作用下的金刚石石墨化研究[J]. 机械工程学报, 2015,51(17):162.
13Paul E, Evans C J, Mangamelli A, et al. Chemical aspects of tool wear in single point diamond turning[J]. Precis Eng, 1996,18(1):4.
14Zhou Ming, Zou Lai. Tool wear mechanism of diamond cutting of ferrous metals in frictional wear experiments[J]. Optics Precis Eng, 2013,21(7):1786(in Chinese).
周明, 邹莱. 金刚石切削黑色金属时刀具磨损机理的摩擦磨损试验[J]. 光学精密工程, 2013,21(7):1786.
15Wen Xuelong, Gong Yadong, Cheng Jun, et al. Mechanism analysis and experimental research on wear of electroplated diamond micro-grinding tool[J]. J Mech Eng, 2015,51(11):177(in Chinese).
温雪龙, 巩亚东, 程军,等. 电镀金刚石微磨具磨损机理分析与试验研究[J]. 机械工程学报, 2015,51(11):177.
[1] 吴蒙华, 姜炳春, 肖雨晴, 贾卫平. 功率超声对无掩膜定域性电沉积三维镍质微结构成型过程的影响[J]. 材料导报, 2025, 39(1): 23110271-6.
[2] 徐东, 金天, 王朋波, 程战. Gd改性Ni-Cr钎料钎焊金刚石组织和性能研究[J]. 材料导报, 2024, 38(19): 23070245-5.
[3] 呼丹明, 段锋, 丁冬海, 李杰, 尹育航, 彭凯. 不烧滑板磨削加工用Fe-Ni-Cu-Sn金属基金刚石工具的制备与性能[J]. 材料导报, 2024, 38(10): 22100199-7.
[4] 田娅, 马立文, 席晓丽. 电沉积法制备含钼合金的研究进展[J]. 材料导报, 2023, 37(3): 21030193-7.
[5] 姚峄林, 张锦秋, 杨培霞, 安茂忠. 激光辅助电沉积技术及其在制备功能材料方面的应用[J]. 材料导报, 2022, 36(3): 20080209-9.
[6] 向鑫, 杨飞龙, 张桂凯, 胡立, 宋雅琪, 朱力桂. 管件内壁电沉积涂层技术的研究进展[J]. 材料导报, 2022, 36(13): 20100118-7.
[7] 王旭, 牛宗伟, 王晓明, 赵阳, 韩国峰, 常青, 付华, 滕涛, 赵菲菲. 外场(力)辅助射流电沉积研究现状[J]. 材料导报, 2021, 35(5): 5107-5121.
[8] 魏运先, 段锋, 尹育航, 彭凯, 呼丹明, 丁冬海. 连铸烧成铝锆碳质滑板磨削用Fe-Cu-Sn-Ni基结合剂金刚石工具的性能[J]. 材料导报, 2021, 35(14): 14166-14170.
[9] 廖磊, 吕承航, 黄维刚, 秦霸. 电沉积法制备纳米SnO2及其应用综述[J]. 材料导报, 2020, 34(Z2): 57-62.
[10] 吴建辉, 吴蒙华, 佐姗姗, 钱宁开. 无掩模定域性电沉积三维微结构的仿真研究[J]. 材料导报, 2020, 34(Z1): 427-432.
[11] 吴双全, 任鑫, 初鑫, 江仁康, 窦春岳, 高志玉. 基于双向脉冲电沉积下的Ni-纳米TiC复合镀层结构及耐磨性能[J]. 材料导报, 2020, 34(24): 24080-24085.
[12] 贾卫平, 吴蒙华, 贾振元, 董桂馥, 李晓鹏, 周绍安. 超声功率对多场耦合作用下脉冲电沉积Ni-ZrO2纳米复合镀层性能的影响[J]. 材料导报, 2020, 34(2): 2017-2022.
[13] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[14] 姚天宇, 杨海燕, 周素洪, 叶兵, 蒋海燕. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478.
[15] 蒋青松, 陈俊文, 杨子莹, 李文波, 程文杰, 胡光. 利用电沉积-溶剂热-硒化技术提高基于二硒化镍对电极的染料敏化太阳能电池的填充因子[J]. 材料导报, 2019, 33(24): 4040-4045.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed