Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 147-151    https://doi.org/10.11896/j.issn.1005-023X.2017.020.030
  计算模拟 |
微孔结构对PMI泡沫准静态压缩性能的影响
周景隆, 李文晓, 薛鹏
同济大学航空航天与力学学院,上海 200092
The Effects of Microcell Structure on Quasi-static Compression Performance of PMI Foam
ZHOU Jinglong, LI Wenxiao, XUE Peng
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092
下载:  全 文 ( PDF ) ( 2214KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于BBC点集建立了聚甲基丙烯酰亚胺(PMI)闭孔泡沫的Kelvin十四面体模型和Laguerre模型,并采用有限元方法研究了其在准静态载荷作用下的压缩性能。分析了孔径大小、泡孔体积离散系数对压缩弹性模量、初始峰值应力和能量吸收能力的影响。结果表明:Kelvin十四面体模型可以较好地预测PMI泡沫的压缩弹性模量和峰值应力;在相同相对密度条件下,小孔径泡沫的初始峰值应力和能量吸收能力均高于大孔径泡沫,而压缩弹性模量则低于大孔径泡沫;随着泡孔体积离散系数的增大,闭孔PMI泡沫压缩弹性模量、初始峰值应力和能量吸收能力均减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周景隆
李文晓
薛鹏
关键词:  聚甲基丙烯酰亚胺(PMI)闭孔泡沫  十四面体模型  Laguerre模型  弹性模量  初始峰值应力    
Abstract: On the basis of the BBC points set, the Kelvin tetrakaidecahedron and Laguerre tessellation models for the polymethacrylimide (PMI) closed-cell foam were established. The quasi-static compression performance was analyzed by finite element method. The effects of cell size and cell volume dispersion on compression modulus, initial peak stress, and energy absorptivity were discussed. Numerical results showed that the tetrakaidecahedron model can predict the compression elastic modulus and initial peak stress of the PMI foam quite well. Under the same relative density, the smaller cell size will lead to higher initial peak stress and higher energy absorption capacity,but lower compression elastic modulus. The compression elastic modulus, initial peak stress and energy absorption capacity of the closed-cell PMI foam decreases with the increasing cell volume dispersion.
Key words:  polymethacrylimide closed-cell foam    Kelvin tetrakaidecahedron model    Laguerre tessellation    elastic modulus    initial peak stress
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TB332  
  TQ328.2  
作者简介:  周景隆:男,1990年生,硕士,主要研究方向为高分子及复合材料 E-mail:1433481@tongji.edu.cn 李文晓:通讯作者,女,1968年生,副教授,主要研究方向为高分子及复合材料 E-mail:wenxiaoli@tongji.edu.cn
引用本文:    
周景隆, 李文晓, 薛鹏. 微孔结构对PMI泡沫准静态压缩性能的影响[J]. 《材料导报》期刊社, 2017, 31(20): 147-151.
ZHOU Jinglong, LI Wenxiao, XUE Peng. The Effects of Microcell Structure on Quasi-static Compression Performance of PMI Foam. Materials Reports, 2017, 31(20): 147-151.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.030  或          https://www.mater-rep.com/CN/Y2017/V31/I20/147
1 Qu Chunyan, Xie Kelei, Ma Yingjian, et al. Preparation and characterization of polymethacrylimide foams[J]. J Mater Eng, 2008(11):19(in Chinese).
曲春艳,谢克磊,马瑛剑,等. 聚甲基丙烯酰亚胺(PMI)泡沫塑料的制备与表征[J]. 材料工程, 2008(11):19.
2 Chen Xiaoqiang, Zhang Man, Lei Yi. Preparation and compression properties of PMI foam[J]. China Plast Ind, 2011,39(6):60(in Chinese).
陈小强,张曼,雷毅. 聚甲基丙烯酰亚胺泡沫的制备及其压缩性能[J]. 塑料工业, 2011,39(6):60.
3 Zhao Feiming, An Sitong, Mu Han. Present state of art of polymethacrylimide (PMI) foam research[J]. Aerosp Mater Technol, 2008(1):1(in Chinese).
赵飞明,安思彤,穆晗. 聚甲基丙烯酰亚胺(PMI)泡沫研制现状[J]. 宇航材料工艺, 2008(1):1.
4 Chen Y, Das R, Battley M. Effects of cell size and cell wall thickness variations on the stiffness of closed-cell foams[J]. Int J Solids Struct, 2015,52:150.
5 Lu Pingcai, Ruan Shiping. Preparation and research of thermostable microporous PMI foams[J]. Guangzhou Chem Ind, 2011,39(23):71.
鲁平才,阮诗平. 耐高温微细孔结构PMI泡沫的制备及研究[J]. 广州化工, 2011,39(23):71.
6 Xie Kelei, Qu Chunyan, Ma Yingjian, et al. Effect of cross-linking agent to structure and properties of PMI foams[J]. J Mater Eng, 2009(4):23(in Chinese).
谢克磊,曲春艳,马瑛剑,等. 交联剂对PMI泡沫塑料结构与性能的影响[J]. 材料工程, 2009(4):23.
7 Qu Chunyan, Jiao Zibao. Effect of monomer ratio on structure and properties of PMI foams[J]. Chem Adhes, 2011(5):25(in Chinese).
曲春艳,焦自保. 单体配比对PMI泡沫塑料结构和性能的影响[J]. 化学与黏合, 2011(5):25.
8 Chen Xiaoqiang, Zhang Man, Lei Yi. Transformation of molecular structure during foaming of PMI foam[J]. Aerosp Mater Technol, 2011(5):32(in Chinese).
陈小强,张曼,雷毅. PMI泡沫发泡过程中的分子结构转变[J]. 宇航材料工艺, 2011(5):32.
9 Chen Yimin, He Bin. Preparation and structural characterization of polymethacrylimide foams[J]. New Chem Mater, 2007(2):32(in Chinese).
陈一民,何斌. 聚甲基丙烯酰亚胺(PMI)泡沫制备及结构表征[J]. 化工新型材料, 2007(2):32.
10Zhang Jialei, Lu Zixing. Finite element analysis for the elastic pro-perties of closed-cell foams based on a tetrakaidecahedron model[J]. J Mech Strength, 2007,29(2):315(in Chinese).
张家雷,卢子兴. 基于十四面体模型的闭孔泡沫材料弹性性能的有限元分析[J]. 机械强度, 2007,29(2):315.
11Zhu Hong, Han Jiecai, Zhang Yumin, et al. Characterization of tetrakaidecahedral closed-cell cellular materials[J].J Harbin Inst Technol, 2011(5):71(in Chinese).
朱虹,韩杰才,张宇民,等. 十四面体闭孔多孔材料表征量特性研究[J]. 哈尔滨工业大学学报, 2011(5):71.
12Song Yanze, Li Zhiqiang, Zhao Longmao. Finite element analysis of dynamic crushing behaviors of closed-cell foams based on a tetrakai-decahedron model[J]. Explos Shock Waves, 2009(1):49(in Chinese).
宋延泽,李志强,赵隆茂. 基于十四面体模型的闭孔泡沫材料动态力学性能的有限元分析[J]. 爆炸与冲击, 2009(1):49.
13Lu Zixing, Zhang Jialei, Wang Song. Investigation into elastic pro-perties of an isotropic random foam model[J].J Beijing University of Aeronautics and Astronautics, 2006,32(12):1468(in Chinese).
卢子兴,张家雷,王嵩. 各向异性随机泡沫模型的弹性性能分析[J].北京航空航天大学学报, 2006,32(12):1468.
14Wang Song, Lu Zixing. Investigation into elastic properties of closed-cell Voronoi foam [J]. Acta Aeronaut Astronaut Sin, 2007,28(3):574(in Chinese).
王嵩,卢子兴. 闭孔 Voronoi泡沫的弹性性能分析[J]. 航空学报, 2007,28(3):574.
15Cao Yu, Li Wenxiao, Guan Wei. Investigation into elastic properties of close-cell foam based on the Voronoi random anisotropic model[J]. Mater Rev:Res,2012,26(8):145(in Chinese).
曹禺,李文晓,官威. 基于Voronoi随机模型的各向异性闭孔泡沫的弹性性能研究[J]. 材料导报:研究篇, 2012,26(8):145.
16Barbier C, Michaud P M, Baillis D, et al. New laws for the tension/compression properties of Voronoi closed-cell polymer foams in relation to their microstructure[J]. Eur J Mech A:Solids, 2014,45:110.
17Li Z, Zhang J, Fan J, et al. On crushing response of the three-dimensional closed-cell foam based on Voronoi model[J]. Mech Mater, 2014,68:85.
18Fang Q, Zhang J, Zhang Y, et al. Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact[J]. Compos Struct, 2015,124:409.
19Zhang Fu, Li Xudong. Microstructure design and elastic property analysis of foam material[J]. J Mater Eng, 2014(2):39(in Chinese).
张赋,李旭东. 泡沫材料微结构设计与弹性性能分析[J]. 材料工程, 2014(2):39.
20Zhang Fu, Li Xudong. Research on incremental algorithm and software design for Laguerre diagram of set of weighted points[J]. Comput Eng Appl, 2012(30):10.
张赋,李旭东. 带权点集Laguerre图的增量算法与软件设计研究[J]. 计算机工程与应用, 2012(30):10.
21胡培. ROHACELL®技术手册[M].上海:德固萨(中国)投资有限公司上海分公司, 2005:24.
22Xue Peng. Preparation technology and performance study of PMI foam[D]. Shanghai:Tongji University, 2015(in Chinese).
薛鹏. PMI泡沫的制备工艺与性能研究[D].上海:同济大学, 2015.
23Tan P J,Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminum foams. Part I—Experimental data and observations[J]. J Mech Phys Solids, 2005(53):2174.
24Lorna J Gibson, Michael F Ashby. Cellular solids:Structure and properties[M]. Cambridge University Press, 1999:184.
[1] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[2] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[3] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[4] 李超, 周梅, 李杨, 张凯, 郭凌志. 固废粗集料平均弹性模量与混凝土弹性模量的相关性[J]. 材料导报, 2024, 38(4): 22050271-8.
[5] 倪彤元, 杜鑫, 莫云波, 黄森乐, 杨杨, 刘金涛. 基于ANN的HVFAC拉伸性能预测评价[J]. 材料导报, 2024, 38(10): 23070117-9.
[6] 侯永强, 尹升华, 曹永, 杨世兴, 张敏哲. 尾砂胶结充填体单轴受压应力-应变关系及其损伤本构模型[J]. 材料导报, 2022, 36(16): 21010265-8.
[7] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[8] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[9] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[10] 王家滨, 王斌, 张凯峰, 李恒. 盐冻损伤喷射混凝土衬砌结构氯离子扩散及其模型[J]. 材料导报, 2020, 34(16): 16055-16061.
[11] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[12] 崔岩, 倪浩晨, 曹雷刚, 杨越, 王一鸣. SiC颗粒整形对高体分铝基复合材料力学性能的影响及有限元模拟[J]. 材料导报, 2019, 33(24): 4126-4130.
[13] 陈景民,李久盛,陈晋阳,曾祥琼. 模拟人体皮肤湿度响应特征和力学性质的皮肤模型[J]. 材料导报, 2019, 33(22): 3829-3832.
[14] 聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
[15] 刘律宏, 刘燕萍, 马晋遥, 桑利军, 程晓鹏, 张跃飞. 利用原位压痕技术表征原子层沉积Al2O3超薄纳米薄膜的力学性能[J]. 材料导报, 2019, 33(18): 3026-3030.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed