Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 150-154    https://doi.org/10.11896/j.issn.1005-023X.2017.02.031
  计算模拟 |
铸锻联合成形工艺晶粒分布预测协同仿真技术*
王伟, 马瑞, 赵军, 翟瑞雪
燕山大学先进锻压成形技术与科学教育部重点实验室, 秦皇岛 066004;
Co-simulation Technology of Casting-Forging Combination Forming Process for Grain Distribution Prediction
WANG Wei, MA Rui, ZHAO Jun, ZHAI Ruixue
Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Qinhuangdao 066004;
下载:  全 文 ( PDF ) ( 1756KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 开发了一种铸锻联合成形工艺的协同仿真技术。采用ProCAST软件的CAFE模块进行铸造模拟,获得初始不均匀的铸态晶粒尺寸。编译了一组Fortran程序作为Deform-3D软件的功能模块,用以建立初始不均匀铸态晶粒尺寸的分布与Deform-3D锻造模型之间的耦合。通过对Deform-3D的二次开发,实现了锻造过程中微观组织演变的数值模拟。最终实现了对动态再结晶晶粒尺寸和动态再结晶体积分数的预测。采用开发的协同仿真技术对截齿齿体的铸锻联合成形工艺进行了数值模拟分析。模型分别采用了初始均匀的晶粒尺寸和由铸造模拟获得的初始不均匀的晶粒尺寸,获得了两种模型的动态再结晶晶粒尺寸和动态再结晶体积分数的分布。通过对比分析,证明了铸锻联合成形工艺晶粒分布预测协同仿真技术的可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王伟
马瑞
赵军
翟瑞雪
关键词:  协同仿真  铸锻成形  动态再结晶  晶粒分布预测    
Abstract: A co-simulation technology of casting-forging combination forming process was developed. Initial nonuniform cas-ting grain size was obtained from CAFE module of ProCAST software by casting simulation. A Fortran program was compiled as a function module of Deform-3D software to establish the coupling between the initial nonuniform casting grain size distribution and the Deform-3D forging model. The simulation of microstructure evolution during the forging process was realized though the secondary development of Deform-3D software. Finally, the distribution of dynamic recrystallized grain size and dynamic recrystallization vo-lume fraction could be predicted. The casting-forging combination forming of the cutting pick body was simulated by the developed co-simulation technology. The distribution of dynamic recrystallized grain size and dynamic recrystallization volume fraction of the two models, one model with initial uniform grain size, another with initial nonuniform grain size form the casting simulation, were acquired respectively. The feasibility of co-simulation technology of casting-forging combination forming process for grain distribution prediction was proved by the comparison result analysis.
Key words:  co-simulation    casting-forging forming    dynamic recrystallization    grain distribution prediction
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TG244  
  TG316  
基金资助: *国家自然科学基金(51575473);河北省青年拔尖人才支持计划资助项目
作者简介:  王伟:男,1986年生,博士研究生,主要研究方向为金属材料精密塑性成形技术 E-mail:wangweicaijia@ysu.edu.cn 马瑞:通讯作者,1978年生,博士,教授,主要研究方向为冲压成形新工艺及板材成形智能化控制 E-mail:mar@ysu.edu.cn
引用本文:    
王伟, 马瑞, 赵军, 翟瑞雪. 铸锻联合成形工艺晶粒分布预测协同仿真技术*[J]. 《材料导报》期刊社, 2017, 31(2): 150-154.
WANG Wei, MA Rui, ZHAO Jun, ZHAI Ruixue. Co-simulation Technology of Casting-Forging Combination Forming Process for Grain Distribution Prediction. Materials Reports, 2017, 31(2): 150-154.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.031  或          https://www.mater-rep.com/CN/Y2017/V31/I2/150
1 Li Tao, Wang Shuncheng, Zheng Kaihong, et al. Research progress on casting and forging combination forming technology for metal materials[J]. Mater Rev: Rev,2014,28(6): 119(in Chinese).
李滔,王顺成,郑开宏,等.金属材料铸锻复合成形技术的研究进展[J].材料导报:综述篇,2014,28(6):119.
2 Han Y, Wu H, Zhang W, et al. Constitutive equation and dynamic recrystallization behavior of as-cast 254SMO super-austenitic stainless steel[J]. Mater Des,2015,69:230.
3 Guo Yina, Li Yongtang, Guo Zhe, et al. Microstructural evolution of as-cast 42CrMo ring during hot rolling[J]. J Mech Eng,2014,50(12):30(in Chinese).
郭一娜,李永堂,郭喆,等.铸态42CrMo环坯热辗扩微观组织模拟[J].机械工程学报,2014,50(12):30.
4 Gao Liang, Chen Fei, Sui Dashan, et al. Hot deformation behavior and grain evolution of as-cast SA508-3 steel with coarse grain[J]. J Plast Eng,2015,22(6):130(in Chinese).
高亮,陈飞,隋大山,等.SA508-3钢铸态粗晶组织热压缩变形行为与晶粒演化规律[J].塑性工程学报,2015,22(6):130.
5 Kim H R, Seo M G, Bae W B. A study of the manufacturing of tie-rod ends with casting/forging process[J]. J Mater Process Technol,2002,125-126(9):471.
6 Jiang J F, et al. Microstructure and mechanical properties of the motorcycle cylinder body of AM60B magnesium alloy formed by combining die casting and forging[J]. Mater Des,2012,37:202.
7 Jiang J F, Wang Y, Qu J J. Effect of process parameters on microstructure and properties of AM50A magnesium alloy parts formed by double control forming[J]. Trans Nonferrous Met Soc China,2014,24(2):321.
8 Chen H Q, Wang Q C, Guo H G. Research on the casting-forging precision forming process of alternator poles[J]. J Mater Process Technol,2002,129(1-3):330.
9 Zhou H T, Xu S X, Li W D, et al. A study of automobile brake bracket formed by casting-forging integrated forming technology[J]. Mater Des,2015,67:285.
10 Wang S I, Seo M K, Cho J R, et al. A study on the development of large aluminum flange using the casting/forging process[J]. J Mater Process Technol,2002,130-131:294.
11 Wang Shuncheng, Cai Chang, Qi Wenjun, et al. Effects of forging deformation amount on microstructure and mechanical properties of A356 aluminum alloy manufactured by casting-forging integrated technology[J]. J Plast Eng,2014,21(1):58(in Chinese).
王顺成,蔡畅,戚文军,等.锻压变形量对铸锻成形A356铝合金组织及性能的影响[J].塑性工程学报,2014,21(1):58.
12 Lee K, Kwon Y N, Lee S. Correlation of microstructure with mechanical properties and fracture toughness of A356 aluminum alloys fabricated by low-pressure-casting, rheo-casting, and casting-forging processes[J]. Eng Fract Mech,2008,75(14):4200.
13 Lee K, Kwon Y N, Lee S. Effects of eutectic silicon particles on tensile properties and fracture toughness of A356 aluminum alloys fabricated by low-pressure-casting, casting-forging, and squeeze-casting processes[J]. J Alloys Compd,2008,461(1-2):532.
14 Jiang J F, Wang Y, et al. Comparison of mechanical properties and microstructure of AZ91D alloy motorcycle wheels formed by die cas-ting and double control forming[J]. Mater Des,2012,40:541.
15 Jiang J F, Wang Y, Li Y F, et al. A double control forming techno-logy combining die casting and forging for the production of Mg alloy components with enhanced properties[J]. J Mater Process Technol,2012,212(5):1191.
16 Wang S C, Zhou N, Qi W J, et al. Microstructure and mechanical properties of A356 aluminum alloy wheels prepared by thixo-forging combined with a low superheat casting process[J]. Trans Nonferrous Met Soc China,2014,24(7):2214.
17 Zhang Qi, Cao Miao, Zhang Shuai, et al. Integrated casting and forging process for aluminum alloy automobile wheel[J]. J Plast Eng,2014,21(2):1(in Chinese).
张琦,曹苗,张帅,等.汽车轮毂铸锻一体化制造工艺[J].塑性工程学报,2014,21(2):1.
18 Schaffnit P, Stallybrass C, Konrad J, et al. A Scheil-Gulliver model dedicated to the solidification of steel[J]. Calphad,2015,48:184.
19 Zhao Y Z, Zhao Y H, Li Q, et al. Effects of step size and cut-off limit of residual liquid amount on solidification simulation of Al-Mg-Zn system with Scheil model[J]. Intermetallics, 2009, 17: 491.
20 Rappaz M, Gandin C A. Probabilistic modeling of microstructure formation in solidification processes[J]. Acta Metall Mater,1993,41(2):345.
21 Kurz W, Giovanola B, Trivedi R. Microstructural development du-ring rapid solidification[J]. Acta Metall Mater,1986,34(5):823.
22 Lin Yongcheng, et al. Effects of deformation degree on plastic formation and microstructure evolution of 42CrMo steel[J]. J Central South University: Sci Technol,2008,39(5):1005(in Chinese).
蔺永诚,等.压下率对42CrMo钢塑性成形与微结构演化的影响[J]. 中南大学学报:自然科学版,2008,39(5):1005.
23 Ohadi D, Parsa M H, Mirzadeh H. Development of dynamic recrystallization maps based on the initial grain size[J]. Mater Sci Eng A,2013,565(5):90.
24 Wahabi M E, Gavard L, Montheillet F, et al. Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels[J]. Acta Mater,2005,53(17):4605.
25 Mirzadeh H, Parsa M H, Ohadi D. Hot deformation behavior of austenitic stainless steel for a wide range of initial grain size[J]. Mater Sci Eng A,2013,569(3):54.
[1] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[2] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[3] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[4] 王同波, 李伯龙, 亓鹏, 王云鹏, 莫永达, 娄花芬. 含铒近α型高温钛合金中α相的动/静态球化机制[J]. 材料导报, 2024, 38(17): 23100083-6.
[5] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工调控Mg-5Zn-0.6Zr合金耐蚀性的研究[J]. 材料导报, 2024, 38(10): 23020077-6.
[6] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[7] 张鸿飞, 丁雨田, 雷健, 沈悦, 陈建军, 高钰璧. 中低温挤压Mg-1.5Zn-0.2Ca合金组织与性能研究[J]. 材料导报, 2022, 36(3): 20120264-5.
[8] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[9] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[10] 曾泽瑶, 杨银辉, 曹建春, 倪珂, 潘晓宇. 18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢热压缩再结晶行为研究[J]. 材料导报, 2021, 35(18): 18163-18169.
[11] 刘筱, 王洋洋, 叶俊宏, 朱必武, 杨辉, 胡铭月, 唐昌平, 刘文辉. AZ31镁合金高应变速率轧制宏微观仿真[J]. 材料导报, 2021, 35(14): 14101-14106.
[12] 尹畅畅, 余登德, 陈家林, 闻明, 管伟明, 谭志龙. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126.
[13] 韩丽青, 吴云胜, 刘状, 秦学智, 王常帅, 周兰章, 于宏, 陈亚军. 一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为[J]. 材料导报, 2020, 34(6): 6109-6113.
[14] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[15] 王昕宇, 徐春, 黎雨, 庞灵欢, 王斌君, 陈建斌. 电脉冲拉伸下5052铝合金的变形行为及微观组织和织构演变[J]. 材料导报, 2020, 34(24): 24097-24103.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed