Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 97-101    https://doi.org/10.11896/j.issn.1005-023X.2017.018.020
  材料研究 |
硅丙乳液包覆Mg(OH)2核壳结构纳米粒子的制备与表征*
李延安, 董海泉, 徐丽娜, 李蛟
山东理工大学材料科学与工程学院,淄博 255049
Preparation and Characterization of Silicone-acrylate/Magnesium Hydroxide Core-shell Structured Hybrid Nanoparticles
LI Yan'an, DONG Haiquan, XU Lina, LI Jiao
School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049
下载:  全 文 ( PDF ) ( 1408KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为有效提高Mg(OH)2纳米粒子在硅丙乳液中的相容性与分散稳定性,在油酸修饰Mg(OH)2纳米粒子的基础上,以甲基丙烯酸甲酯、丙烯酸丁酯、丙烯酸与乙烯基三乙氧基硅烷为共聚单体,通过乳液聚合法制备出具有核壳结构的硅丙乳液包覆Mg(OH)2复合材料。利用傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)、透射电子显微镜(TEM)等测试手段对样品结构、形貌进行了表征。通过燃烧实验,研究了硅丙乳液包覆Mg(OH)2纳米粒子对水性防火涂料阻燃性能的影响。结果表明,油酸通过酯化作用修饰在Mg(OH)2纳米粒子表面,借助油酸分子中双键结构,丙烯酸类混合单体在纳米Mg(OH)2表面完成聚合过程,形成以Mg(OH)2纳米粒子为核、硅丙乳液为壳的复合材料。XRD与热分析表明经硅丙乳液包覆的纳米Mg(OH)2晶体结构与热稳定性能未受影响。此外,掺杂0.1%(质量分数)的硅丙乳液包覆Mg(OH)2可使水性防火涂料阻燃时间延长至113 min,较未掺杂水性涂料阻燃时间(91 min)提高约23%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李延安
董海泉
徐丽娜
李蛟
关键词:  氢氧化镁  油酸  硅丙乳液  核壳结构  水性防火涂料    
Abstract: To effectively improve the compatibility and dispersion stability of magnesium hydroxide nanoparticles in the silicone-acrylate emulsion, core-shell silicone-acrylate/magnesium hydroxide (SA/MH) hybrid nanoparticles were prepared by means of grafting silicone-acrylate polymer, synthesis with butyl acrylate, methyl methacrylate, acrylic acid and vinyltriethoxysilane as co-monomers, onto the surface of nanoparticles after oleic acid modification. The obtained nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The effect of SA/MH composites on the flame retardancy in waterborne flame-retardant coating was also investigated by combustion test. The results showed that the silicone-acrylate polymer could be successfully grafted on the surface of oleic acid-modified MH and the uniformly-dispersed core-shell structure of SA/MH composites with MH-cores and SA-shell was formed. XRD and TGA indicated that the crystal structure and thermal stability of nanocomposites were not destroyed. Moreover, the coating containing 0.1% SA/MH nanocomposites showed the better fire protection performance with the longer-lasting protection time (113 min), 23% higher than that of undoped coating sample (91 min).
Key words:  magnesium hydroxide    oleic acid    silicone acrylic emulsion    core-shell    waterborne fireproof coating
出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  O632.52  
  TQ637.8  
基金资助: 山东省高等学校科技发展计划(J15LA08);山东理工大学青年教师发展支持计划(4072-114019)
通讯作者:  李蛟:通讯作者,男,1976年生,博士,副教授,硕士研究生导师,研究方向为微纳米光电子材料与水性功能涂料 E-mail:haiyan9943@163.com   
作者简介:  李延安:男,1993年生,硕士研究生,研究方向为微纳米材料 E-mail:photocatalysis_an@126.com
引用本文:    
李延安, 董海泉, 徐丽娜, 李蛟. 硅丙乳液包覆Mg(OH)2核壳结构纳米粒子的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(18): 97-101.
LI Yan'an, DONG Haiquan, XU Lina, LI Jiao. Preparation and Characterization of Silicone-acrylate/Magnesium Hydroxide Core-shell Structured Hybrid Nanoparticles. Materials Reports, 2017, 31(18): 97-101.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.020  或          https://www.mater-rep.com/CN/Y2017/V31/I18/97
1 Munir T, Yasemin S. The properties of polymer composites filled with Mg(OH)2 powder[J]. J Polym Mater, 2012,29(2):189.
2 Ma H, Chen Z X, Mao Z P. Controlled growth of magnesium hydroxide crystals and its effect on the high-temperature properties of cotton/magnesium hydroxide composites[J]. Vacuum, 2013,95:1.
3 Sung G, Kim J W, Kim J H. Fabrication of polyurethane composite foams with magnesium hydroxide filler for improved sound absorption[J]. J Ind Eng Chem, 2016,44:99.
4 Wang Z Z, Qu B J, Fan W C, et al. Combustion characteristics of halogen-free flame-retarded polyethylene containing magnesium hydroxide and some synergists[J]. J Appl Polym Sci, 2001,81(1):206.
5 Song G L, Ma S D, Tang G Y, et al. Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide[J]. Energy, 2010,35:2179.
6 Lan S J, Li L J, Xu D F, et al. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process [J]. Appl Surf Sci, 2016,382:56.
7 Zhang F Z, Zhang H, Su Z X. Surface treatment of magnesium hydroxide to improve its dispersion in organic phase by the ultrasonic technique[J]. Appl Surf Sci, 2007,253(18):7393.
8 Zhang W, Hu Z S, Zhang Y A, et al. Gel-spun fibers from magnesium hydroxide nanoparticles and UHMWPE nanocomposite: The physical and flammability properties[J]. Composites Part B, 2013,51:276.
9 Guo X J, Zhao L H, Zhang L, et al. Surface modification of magnesium aluminum hydroxide nanoparticles with poly(methyl methacrylate) via one-pot in situ polymerization[J]. Appl Surf Sci, 2012,258(7):2404.
10王娟, 李志伟, 李小红, 等. 聚苯乙烯表面包覆氢氧化镁纳米微粒的制备[C] //中国化学会第27届学术年会第04分会场摘要集. 开封, 2010:279.
11Li C Y. Preparation and performance studies of water-based extra-thin fire-retardant coating for steel structure[D]. Guangzhou: South China University of Technology, 2011(in Chinese).
李崇裔. 水性超薄型钢结构防火涂料的制备与性能研究[D]. 广州: 华南理工大学, 2011.
12Yan H, Zhang X H, Wei L Q, et al. Hydrophobic magnesium hydroxide nanoparticles via oleic acid and poly(methyl methacrylate)-grafting surface modification[J]. Powder Technol, 2009,193(2):125.
13Zhang X J. Study on synthesis and application of the waterborne silicone-acrylic emulsion[D]. Guangzhou: South China University of Technology, 2012(in Chinese).
张杏娟. 水性硅丙乳液的合成及应用研究[D]. 广州: 华南理工大学, 2012.
14Yang Z. Preparation and performance research on alkylsilan modified polycrylate emulsion with high alkylsilane content[D]. Jiangmen: Wuyi University, 2012(in Chinese).
杨震. 高硅含量硅丙乳液的制备与性能研究[D]. 江门: 五邑大学, 2012.
15Sierra-fernandez A, Gomez-villalbal S, Milosevio O, et al. Synthesis and morpho-structural characterization of nanostructured magnesium hydroxide obtained by a hydrothermal method[J]. Ceram Int, 2014,40:12285.
16Tan W Q, Li F. Study on the use of nano-aluminum hydroxide in intumescent fire-retardant coatings for steel structure [J]. China Coa-tings, 2008,23(3):30(in Chinese).
覃文清,李风. 纳米氢氧化铝在膨胀型钢结构防火涂料中的应用研究[J].中国涂料, 2008,23(3):30.
[1] 王海燕, 咸龙帝, 尚天蓉, 姚佳岐, 燕小斌, 李澜. BT@PANI核壳粒子的绿色制备及PVDF基复合材料的介电性能[J]. 材料导报, 2024, 38(13): 22120173-6.
[2] 郭鑫, 苏宏玺, 赵鸿, 欧阳成伟, 强小虎, 黄大建. 海泡石/原位生成氢氧化镁对琼脂基气凝胶的性能影响研究[J]. 材料导报, 2023, 37(5): 21090278-8.
[3] 张继生, 米扬, 王艳, 赵磊, 秦甜甜, 孟凡成, 刘国军. 聚(丙烯酸酯-硅氧烷)杂化乳胶粒子的制备及性能[J]. 材料导报, 2023, 37(23): 22060203-6.
[4] 黄贤敏, 李紫薇, 张晓妍, 刘慧, 高红艳, 汪海. 核壳结构的V10O24·12H2O@ACFC:一种高性能对称超级电容器电极材料[J]. 材料导报, 2023, 37(21): 22050088-8.
[5] 易周, 崔世宇, 罗军明, 初雨轩. 溶胶-凝胶法制备核壳结构MoSi2@Al2O3颗粒及其形成机理[J]. 材料导报, 2023, 37(16): 22010273-6.
[6] 邱汉宇, 刘红晶, 姚辉, 刘雪莉, 高洁. 纳米有机杂化材料(NOHMs)用于CO2捕集的研究进展[J]. 材料导报, 2023, 37(16): 21120114-11.
[7] 苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
[8] 齐致雍, 高凤雨, 唐晓龙, 易红宏, 杜影. 核壳催化剂用于大气污染控制的研究进展[J]. 材料导报, 2023, 37(10): 21060234-12.
[9] 吕建伟, 张洪亮, 张戈, 李纪岩. 硅酸锂混合溶液浸泡对石灰岩集料耐磨性能的影响[J]. 材料导报, 2022, 36(Z1): 21120243-8.
[10] 姜超, 华楚侨, 温变英. MOFs基核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2022, 36(16): 21030206-10.
[11] 侯鹏程, 王永亮, 韩志东, 王春锋. 聚碳硅烷协效氢氧化镁阻燃聚乙烯复合材料的残炭结构演变[J]. 材料导报, 2021, 35(z2): 525-528.
[12] 郭佳乐, 赵齐仲, 田方华, 张垠, 周超, 杨森. 室温交换偏置效应的研究进展[J]. 材料导报, 2021, 35(Z1): 297-301.
[13] 马丽, 黄建建, 何慧, 杨波, 贾德民, 郭东杰, 陈宝元. 微波辐照辅助核/壳型聚硅氧烷/聚丙烯酸酯复合乳液的制备与表征[J]. 材料导报, 2021, 35(22): 22166-22171.
[14] 谢登敏, 钱春香, 张霄. 微生物矿化沉积技术强化核壳结构再生粗骨料[J]. 材料导报, 2021, 35(1): 1030-1035.
[15] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed