Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 67-71    https://doi.org/10.11896/j.issn.1005-023X.2017.014.014
  材料研究 |
低碳钢液相等离子体电解硼碳共渗层生长特性研究*
王彬1, 薛文斌2,3, 陈琳2, 魏克俭2, 吴正龙4
1 山西农业大学文理学院, 太谷 030801;
2 北京师范大学核科学与技术学院, 北京 100875;
3 北京市辐射中心, 北京 100875;
4 北京师范大学分析测试中心, 北京 100875;
Growth Mechanism of Boride Layer Formed via Plasma Electrolytic Borocarburizing on Surface of Low-carbon Steel
WANG Bin1, XUE Wenbin2,3, CHEN Lin2 , WEI Kejian2, WU Zhenglong4
1 College of Arts and Science, Shanxi Agricultural University, Taigu 030801;
2 College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875;
3 Beijing Radiation Center, Beijing 100875;
4 Analytical and Testing Center, Beijing Normal University, Beijing 100875;
下载:  全 文 ( PDF ) ( 1821KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在含有硼砂和甘油的电解液中对Q235低碳钢表面进行液相等离子体电解硼碳二元共渗(PEB/C)处理,研究不同时间条件下PEB/C共渗层的组织形貌,着重探讨了PEB/C二元共渗过程中电解质的分解反应和渗硼层快速生长机理。结果表明,在330 V电压条件下,经过6 min PEB/C处理后, 在样品表面开始生成不连续的岛状硼化物;而经过30 min PEB/C处理后,可以形成主要由Fe2B相组成的均匀致密的渗硼层,渗硼层的硬度可以达到1 800HV,厚度约为20 μm。PEB/C共渗样品渗硼层的生长过程主要包括共渗初期阶段、生成岛状硼化物阶段和渗硼层均匀生长阶段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王彬
薛文斌
陈琳
魏克俭
吴正龙
关键词:  等离子体电解渗  硼碳二元共渗  生长机制  低碳钢    
Abstract: Q235 low carbon steel was treated by plasma electrolytic borocarburizing (PEB/C) technique in borax solution with glycerinum additive. At different treatment time, the structure and morphology of borocarburizing layer on Q235 low-carbon steel were investigated. The decomposition reaction of electrolyte and the growth mechanism of boride layer in the PEB/C process were emphatically discussed. The results show that the Q235 low-carbon steel forms a compact boride layer about 20 μm thick after 30 min PEB/C treatment at 330 V. The boride layer mainly consists of Fe2B phase, and the hardness of boride layer can reach 1 800HV. The growth process of boride layer in the PEB/C process involves initial stage, the generation of island boride and the uniform growth of boride layer.
Key words:  plasma electrolytic saturation    borocarburizing    growth mechanism    low-carbon steel
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TG156.8  
基金资助: *山西农业大学科技创新基金(2015YJ02);国家自然科学基金(51671032;51071031)
作者简介:  王彬:男,1987年生,博士,讲师,研究方向为材料表面改性 E-mail:wangbin@sxau.edu.cn
引用本文:    
王彬, 薛文斌, 陈琳, 魏克俭, 吴正龙. 低碳钢液相等离子体电解硼碳共渗层生长特性研究*[J]. 《材料导报》期刊社, 2017, 31(14): 67-71.
WANG Bin, XUE Wenbin, CHEN Lin , WEI Kejian, WU Zhenglong. Growth Mechanism of Boride Layer Formed via Plasma Electrolytic Borocarburizing on Surface of Low-carbon Steel. Materials Reports, 2017, 31(14): 67-71.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.014  或          https://www.mater-rep.com/CN/Y2017/V31/I14/67
1 Yi X H, Li F H, Fan Z G. Technology for solid-state pack boroni-zing of Q235 steel and kinetic study of boron diffusion in steel[J]. Mater Prot,2009,42(4):13(in Chinese).
衣晓红, 李凤华, 樊占国. Q235钢固体粉末渗硼及渗层生长动力学行为[J]. 材料保护,2009,42(4):13.
2 Gómez-Vargas O A, Solis-Romero J, Figueroa-López U, et al. Boro-nitriding coating on pure iron by powder-pack boriding and nitriding processes[J]. Mater Lett,2016,176:261.
3 Bataev I A, Bataev A A, Golkovski M G, et al. Structure of surface layers produced by non-vacuum electron beam boriding[J]. Appl Surf Sci,2013,284:472.
4 Kartal G, Timur S, Sista V, et al. The growth of single Fe2B phase on low carbon steel via phase homogenization in electrochemical boriding (PHEB) [J]. Surf Coat Technol,2011,206:2005.
5 Xie F, Sun L, Pan J W. Characteristics and mechanisms of accelerating pack boriding by direct current field at low and moderate temperatures[J]. Surf Coat Technol,2012,206:2839.
6 Kulka M, Makuch N, Pertek A, et al. An alternative method of gas boriding applied to the formation of borocarburized layer[J]. Mater Characterization,2012,72:59.
7 Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering[J]. Surf Coat Technol,1999,122:73.
8 Xue W B, Jin Q, Liu R, et al. Influence of glycerin concentration on plasma electrolytic saturation process of stainless steel surface[J]. Chinese J Nonferrous Metals,2013,23(3):882 (in Chinese).
薛文斌, 金乾, 刘润, 等. 甘油浓度对不锈钢表面液相等离子体电解渗透过程的影响[J]. 中国有色金属学报,2013,23(3):882.
9 Cavuslu F, Usta M. Kinetics and mechanical study of plasma electrolytic carburizing for pure iron[J]. Appl Surf Sci,2011,257:4014.
10 Tarakci M, Korkmaz K, Gencer Y, et al. Plasma electrolytic surface carburizing and hardening of pure iron[J]. Surf Coat Technol,2005,199:205.
11 Nie X, Wang L, Yao Z C, et al. Sliding wear behaviour of electrolytic plasma nitrided cast iron and steel[J]. Surf Coat Technol,2005,200:1745.
12 Shen D J, Wang Y L, Nash P, et al. A novel method of surface modification for steel by plasma electrolysis carbonitriding[J]. Mater Sci Eng A,2007,458:240.
13 Taheri P, Dehghanian C. Wear and corrosion properties of nanocrystalline coatings on stainless steel produced by plasma electrolytic nitrocarburizing[J]. Int J Mater Res,2008,99:92.
14 Béjar M A, Henríquez R. Surface hardening of steel by plasma-electrolysis boronizing[J]. Mater Des,2009,30:1726.
15 Wang B, Xue W B, Wu J, et al. Characterization of surface hardened layers on Q235 low-carbon steel treated by plasma electrolytic borocarburizing[J]. J Alloys Compd, 2013,578:162.
16 Wang B, Wu J, Jin X Y, et al. Fabrication and characterization of plasma electrolytic borocarburized layers on Q235 low-carbon steel at different discharge voltage [J]. Surf Rev Lett,2017,24:1750088-1.
17 Singh A, Knystautas E J. X-ray photoelectron spectroscopy of boron implanted 4145 steel surface[J]. Appl Surf Sci,1986,40:91.
18 Ghods P, Isgor O B, Brown J R, et al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties[J]. Appl Surf Sci,2011,257:4669.
19 Fu B Q, Liu W, Li Z L. Calculation of the surface energy of hcp-metals with the empirical electron theory[J]. Appl Surf Sci,2009,255:9348.
20 Fu B Q, Liu W, Li Z L.Calculation of the surface energy of bcc-me-tals with the empirical electron theory[J]. Appl Surf Sci,2010,256:689.
21 Keddam M, Chegroune R. A model for studying the kinetics of the formation of Fe2B boride layers at the surface of a gray cast iron [J]. Appl Surf Sci,2010,256:5025.
[1] 任金翠, 吴义胜, 李欣沂, 唐艳姿. 一维HfC、ZrC、TaC的制备与应用[J]. 材料导报, 2025, 39(2): 23100152-10.
[2] 李明新, 魏智磊, 张彪, 赵蕾, 史忠旗. 超细等轴状AlN粉体的燃烧合成制备及机理研究[J]. 材料导报, 2025, 39(1): 23120118-5.
[3] 韦文厂, 刘峥, 魏润芝, 吕奕菊, 韩佳星, 张淑芬. 2-氨基芴双希夫碱在模拟循环冷却水中对低碳钢的缓蚀性能[J]. 材料导报, 2021, 35(12): 12196-12201.
[4] 李啸轩, 张强, 朱春城. 以g-C3N4为原料快速合成Ti2Al(C,N)陶瓷及其层状生长机制研究[J]. 材料导报, 2020, 34(4): 4032-4036.
[5] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[6] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[7] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
[8] 张彦祥, 李红霞, 杨文刚, 刘国齐, 张利萍, 田响宇, 尚心莲. 碳热还原制备镁铝尖晶石晶须及其形成机理[J]. 《材料导报》期刊社, 2018, 32(8): 1352-1356.
[9] 王必磊, 李永灿, 宋长江. 关于低碳钢屈服延伸现象的研究现状[J]. 材料导报, 2018, 32(15): 2659-2665.
[10] 陈连生, 曹鸿梓, 田亚强, 宋进英, 魏英立, 郑小平. 前驱体对含Cu低碳钢I&Q&P处理后组织性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 105-109.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed