Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 131-137    https://doi.org/10.11896/j.issn.1005-023X.2017.013.017
  新材料新技术 |
电气石的环境功能属性及其复合功能材料应用研究*
林森1,2,3, 孙仕勇1,2,3, 申珂璇1,2, 董发勤1,3
1 西南科技大学固体废物处理与资源化教育部重点实验室非金属矿研究所,绵阳 621010;
2 西南科技大学低成本废水处理技术四川省国际科技合作基地,绵阳621010;
3 四川省非金属矿粉体改性与高质化利用技术工程实验室,绵阳621010
Environmental Functionalities of Tourmaline and Applications of Its Functional Composites
LIN Sen1,2,3, SUN Shiyong1,2,3, SHEN Kexuan1,2, DONG Faqin1,3
1 Institute of Non-metallic Minerals, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010;
2 Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010;
3 Sichuan Provincial Engineering Laboratory of Non-metallic Mineral Powder Modification and High Efficiency Utilization, Mianyang 621010
下载:  全 文 ( PDF ) ( 1328KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电气石是非金属矿物领域中较为重要的一类硅酸盐类矿物,属非可再生类天然矿物。电气石晶体具有化学成分复杂、晶形及颜色多样等特征。电气石晶体内部的物质及结构特征,使其具有压电性、热释电性、自发极化效应和释放负离子等特性。近年来,关于利用电气石的环境功能属性制备各类复合功能材料的研究已成为备受关注的热点。基于电气石的来源、分类、晶体内部物质成分与结构组成等,概述了电气石的理化结构特征及各环境功能属性,进而论述电气石及其复合功能材料在各个实际领域中的应用,归纳并总结电气石在现今环境污染治理应用当中存在的相关问题,最后对电气石及其复合功能材料的发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林森
孙仕勇
申珂璇
董发勤
关键词:  电气石  非金属矿  晶体结构  环境功能属性  复合功能材料    
Abstract: Tourmaline is one of the most important silicate minerals in the group of non-metallic minerals as a non-renewable natural mineral. The tourmaline crystal has distinctive characteristics including complex chemical composition,polymorph and color diversity. Tourmaline presents pyroelectric, piezoelectric,spontaneous polarization and negative ionreleasing, which originate from its composition and structural properties. In recent years, it has become a hot topic to prepare various functional composites utilizing tourmaline′s environmental functionalities. This paper provides a summary over the unique physical and chemical properties, and environmental functionalities of tourmaline, based on its origin, classification,crystal composition and microstructure. Furthermore it describes tourmaline′s various applications in the fields of environmental pollution and relevant key issues, also makes a prospect on the development of tourmaline functional composites.
Key words:  tourmaline    non-metallic mineral    crystal structure    environmental functionality    functional composites
出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TB32  
基金资助: *国家自然科学基金(41672039);西南科技大学研究生创新基金(16ycx036)
通讯作者:  孙仕勇:通讯作者,男,1980年生,博士,教授,硕士研究生导师, 研究方向为非金属矿开发与应用 E-mail:shysun@swust.edu.cn   
作者简介:  林森:男,1992年生,硕士研究生, 研究方向为非金属矿开发与应用 E-mail:linsenzxc@163.com
引用本文:    
林森, 孙仕勇, 申珂璇, 董发勤. 电气石的环境功能属性及其复合功能材料应用研究*[J]. 《材料导报》期刊社, 2017, 31(13): 131-137.
LIN Sen, SUN Shiyong, SHEN Kexuan, DONG Faqin. Environmental Functionalities of Tourmaline and Applications of Its Functional Composites. Materials Reports, 2017, 31(13): 131-137.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.017  或          https://www.mater-rep.com/CN/Y2017/V31/I13/131
1 Kubo T. Tourmaline group crystals reaction with water[J]. Ferroelectrics,1992,137(1-4):13.
2 Redler C, Irouschek A, Jeffries T, et al. Origin and formation of tourmaline-rich cordierite-bearing metapelitic rocks from alpe sponda, central alps (switzerland)[J]. J Petrol, 2016,57(2):277.
3 Yang S Y, Jiang S Y, Palmer M R. Chemical and boron isotopic compositions of tourmalinefrom the nyalam leucogranites, south tibetan himalaya: Implication for their formation from B-rich melt to hydrothermal fluids[J]. Chem Geol,2015,419:102.
4 胥焕岩. 电气石环境属性应用[M]. 哈尔滨: 哈尔滨地图出版社,2010:75.
5 Henry D J, Novák M, et al. Nomenclature of the tourmaline-supergroup minerals[J]. Am Mineralogist,2015,96(5-6):895.
6 Lonoox D L. Formation of tourmaline-rich gem pockets in miarolitic pegmatites[J]. Adv Mater,2015,27(2):396.
7 Fuchs Y, et al. Fe-tourmaline synthesis under different T and fO2conditions[J]. Am Mineralogist,2015,83(5-6):525.
8 Zhang Hongchen. Thermal behavior of tourmaline at high tempreature[D]. Tianjin: Hebei University of Technology,2015(in Chinese).
张洪臣. 电气石的高温热行为研究[D]. 天津: 河北工业大学,2015.
9 潘兆橹. 结晶学及矿物学[M]. 北京: 地质出版社,1993:32.
10 Wang Sheng. Study on preparability test of granite pegmatite tourmaline[J]. Min Eng,2015, 13(4):34(in Chinese).
王晟. 花岗伟晶岩型电气石可选性试验研究[J]. 矿业工程,2015,13(4):34.
11 Dong Faqin, He Dengliang, Yuan Changlai. The environmental functional property and trends of application of tourmaline[J]. J Funct Mater,2005,36(10):1485(in Chinese).
董发勤, 何登良, 袁昌来. 电气石的环境功能属性及应用[J]. 功能材料,2005,36(10): 1485.
12 Setkova T V, Shapovalov Y B, Balitskii V S. Experimental growth and structural-morphological characteristics of co-tourmaline[J]. Doklady Earth Sci,2009,424(1): 82.
13 Lussier A J, et al. The crystal chemistry of ‘wheatsheaf’ tourmaline from mogok, myanmar[J].Mineral Mag,2016,75(1): 65.
14 Catalan G, Lubk A, et al. Flexoelectric rotation of polarization in ferroelectric thin films[J]. Nat Mater,2011,10(12):963.
15 Wu Ruihua, Tang Yunhui, Zhang Xiaohui. The electrostatic field effect of tourmaline particles and the prospect of its application to environmental protection field[J]. Acta Petrol Mineral,2001,20(4):474(in Chinese).
吴瑞华, 汤云晖, 张晓晖. 电气石的电场效应及其在环境领域中的应用前景[J]. 岩石矿物学杂志,2001,20(4):474.
16 Berryman E J, Wunder B, Ertl A, et al. Influence of the X-site composition on tourmaline′s crystal structure: Investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy[J]. Phys Chem Miner,2016,43(2):83.
17 Drivenes K, Larsen R B, Müller A, et al. Late-magmatic immiscibi-lity during batholith formation: Assessment of B isotopes and trace elements in tourmaline from the land′s end granite, SW England[J]. Contrib Mineral Petrol,2015,169(6):1.
18 Li J, et al. A novel technology for remediation of PBDEs contaminated soils using tourmaline-catalyzed Fenton-like oxidation combined with P. chrysosporium[J]. Chem Eng J,2016,296:319.
19 Voigt R G, Llorente A M, Jensen C L, et al.A randomized, double-blind, placebo-controlled trial of docosahexaenoic acid supplementation in children with attention-deficit/hyperactivity disorder[J]. J Pediatr,2001,139(2):189.
20 Henry D J, Dutrow B L, Selverstone J. Compositional polarity in replacement tourmaline—An example from the tauern window, eas-tern alps[J].Am Mineralogist,2002,4(12):52.
21 Liu Zhiguo. Effect of heat treatment on the surface free energy of tourmaline powders[D]. Tianjin: Hebei University of Technology,2007(in Chinese).
刘志国. 热处理对电气石粉体表面自由能的影响研究[D]. 天津: 河北工业大学,2007.
22 He Dengliang, Dong Faqin, Liu Jiaqin, et al. Development and application of far infrared functional materials[J]. J Funct Mater,2008,39(5):709(in Chinese).
何登良, 董发勤, 刘家琴, 等. 远红外功能材料的发展与应用[J]. 功能材料,2008,39(5): 709.
23 Vereshchagin O S, Ertl A, Giester G, et al. Structural and chemical investigation of a zoned synthetic Cu-rich tourmaline[J]. Can Mine-ralogist,2015,53(2):209.
24 Vereshchagin O S, Frankkamenetskaya O V, Rozhdestvenskaya I V. Crystal structure and stability of Ni-rich synthetic tourmaline. Distribution of divalent transition-metal cations over octahedral positions[J]. Mineral Mag,2015,79(4):997.
25 Wang Saifei. Preparation of rare earth tourmaline composite and its catalytic oxidation of methane[D]. Tianjin: Hebei University of Technology,2015(in Chinese).
王赛飞. 稀土电气石复合材料的制备及催化氧化甲烷性质的研究[D]. 天津: 河北工业大学,2015.
26 Yu Miao, Feng Chengyou, Liu Hongchuan, et al. Mineralogy, element geochemistry and genesis of tourmaline from galinge skarn deposit, qinghai province[J]. Miner Depos,2016, 35(1):69(in Chinese).
于淼, 丰成友, 刘洪川, 等. 青海尕林格铁矿床电气石矿物学、元素地球化学及成因研究[J]. 矿床地质,2016,35(1):69.
27 Jiang S Y, Radvanec M, Nakamura E, et al. Chemical and boron isotopic variations of tourmaline in the hnilec granite-related hydrothermal system, slovakia:Constraints on magmatic and metamorphic fluid evolution[J]. Lithos,2008,106(1):1.
28 Feng Y W, Shang Y P. Effects of fine tourmaline particles on photocatalytic activity of nano-sized TiO2 powders[J]. Mater Res Innov,2016,19(10):10.
29 Chang Ying. The research ofremediation of PAHs and OCPs pollution of sediment in soil by tourmaline combined with microbial[D]. Tianjin: Nankai University,2012(in Chinese).
常颖. 电气石联合微生物对沉积物物土壤中PAHs和OCPs污染修复研究[D]. 天津: 南开大学,2012.
30 Wang C, Zhang Y, Yu L, et al. Oxidative degradation of azo dyes using tourmaline[J]. J Hazard Mater,2013,260(18):851.
31 Bian X, Ji R. Photocatalytic degradation of methyl blue by tourmaline-coated TiO2 nanoparticles[J].Desalination Water Treat,2015, 12(35): 1.
32 Zhang Yang, Wang Yong, Zhang Zhimin, et al. Study on the inf-luence factors and mechanism of regulation of pH by tourmaline through heat treatment[J]. Green Living, 2014, 22(81): 154 (in Chinese).
张阳, 王勇, 张志敏, 等. 热处理电气石调节pH的影响因素及机理研究[J]. 环境与生活, 2014, 22(81): 154.
33 Zhang Wei, Dong Faqin. Characteristics of Sr2+ adsorption by tourmaline[J]. Hubei Agric Sci,2015, 54(23):6018 (in Chinese).
张伟, 董发勤. 电气石对溶液中Sr2+的吸附行为研究[J]. 湖北农业科学, 2015, 54(23): 6018.
34 Zhang Qing, Li Hui, Feng Yanwen, et al. Study on the treatment of lead storage battery wastewater by tourmaline powder adsorption[J]. Ind Water Treat,2015,35(3):68(in Chinese).
张青, 李慧, 冯艳文, 等. 电气石粉吸附处理铅蓄电池废水的研究[J]. 工业水处理,2015, 35(3):68.
35 Yue J, Wang Y, Feng X, et al. Effect of tourmaline on trichloroethylene degradation with dechlorinating bacteria[J]. Environ Prot Chem Ind,2015,35(3):226.
36 Huang Fengping, Wang Shuai, Zhang Shuang, et al. Preparation of tourmaline/TiO2 nanotube composites by hydrothermal method and its photocatalytic performance[J]. J Chin Ceram Soc, 2015,43(7):904(in Chinese).
黄凤萍, 王帅, 张双, 等. 水热法制备电气石/TiO2纳米管及光催化性能[J]. 硅酸盐学报, 2015,43(7):904.
37 Zhang J. The role of tourmaline particles in the moving bed bioreator for coking wastewater treatment[J]. Appl Mech Mater,2013,321-324(7):192.
38 Qiu Shan, Zhou Yi, Yang Jixian, et al. Study on the effect of tourmaline spontaneous polarity on water pH and the growth of nitrosomonas[J]. Environ Pollut Control,2013,35(8):14(in Chinese).
邱珊, 周义, 杨基先, 等. 电气石自发电极性对溶液pH和亚硝化胞菌生长影响研究[J]. 环境污染与防治,2013,35(8):14.
39 Zhou Guojun, Lin Ying, Lv Yuepeng, et al. Preparation and application of lithium tourmaline/glass composite material[J]. J Jilin Univ:Earth Sci Ed,2015(S1):127(in Chinese).
周国君, 林瑛, 吕月鹏, 等. 锂电气石/玻璃复合材料的制备与应用[J]. 吉林大学学报: 地球科学版,2015(S1):127.
40 Liu Xinwei, Chen Yong, Li Hui. Preparation and photocatalytic activity of N and La co-doped nano TiO2/tourmaline composites[J]. Acta Mater Compos Sin,2016,33(4):875(in Chinese).
刘欣伟, 陈勇, 李慧, 等. N与La共掺杂纳米TiO2/电气石复合材料的制备及其光催化性能[J]. 复合材料学报,2016,33(4): 875.
41 Du Bing, Wei Qufu, Zheng Laijiu. Preparation of tourmaline/sodium alginate/poly (vinyl alcohol) fiber by electrospun technology[J]. New Chem Mater,2015,43(5):40(in Chinese).
杜冰, 魏取福, 郑来久. 基于静电纺丝制备电气石/海藻酸钠/聚乙烯醇复合纤维[J]. 化工新型材料,2015,43(5):40.
42 Yu Z Q, Chen J F, Yang W H, et al. Study on toothpaste products used in the tourmaline material[J]. Guangzhou Chem Ind,2015,43(1):85(in Chinese).
于志强,陈健芬,杨伟浩,等.电气石负离子材料用于牙膏产品中的研究[J]. 广州化工,2015,43(1):85.
43 Cheng Jian. Study on preparation of tourmaline aqueous slurry and the application in the cotton fabric finishing[D]. Hangzhou: Zhejiang Science and Technology University,2016(in Chinese).
程健. 电气石水性浆料的制备及在棉织物整理中的应用研究[D]. 杭州: 浙江理工大学, 2016.
44 Xi Boan. Discussion on the improvement of negative air ions release from tourmaline[J]. China Non-metal Min Ind,2015(2):19(in Chinese).
席伯安. 增强电气石释放负氧离子功能的探讨[J]. 中国非金属矿工业导刊,2015(2):19.
45 Hu Y M, Chen X B, Tang M R. Research development and prospects of functional tourmaline composites[J]. Earth Sci Front,2014,21(5):331(in Chinese).
胡应模,陈旭波,汤明茹.电气石功能复合材料研究进展及前景展望[J]. 地学前缘,2014,21(5):331.
46 He Dengliang, Liu Laibao, Huang Chunmei, et al. Study on the antibacterial performance and mechanism of Ag/tourmaline composite powders[J]. J Mineral Petrol,2016,36(1):115(in Chinese).
何登良, 刘来宝, 黄春梅, 等. 银离子包覆电气石复合粉体的抗菌性能及机理研究[J]. 矿物岩石,2016,36(1):115.
47 徐红, 胡慧玲, 汪辉, 等. 托玛琳抗菌保健热熔絮片: CN201310553472.5[P].2014-02-19.
48 张杰, 庄可香, 魏国营. 一种长效抗菌保健型密度板: CN201410439699.1[P].2015-01-28.
49 An Zhenhua, Xu Lijia, Zhang Yi. Degradation effects of three kinds of tourmaline on microcystins-LR under different temperature treatments[J]. Mod Agric Sci Technol,2016(10): 163(in Chinese).
安振华, 徐立佳, 张易. 3种电气石粉成分测定及不同温差下对微囊藻毒素(MC-LR)的降解研究[J]. 现代农业科技,2016(10):163.
50 Wang W, Jiang H, Zhu G, et al. Effect of tourmaline on denitrification characteristics of hydrogenotrophic bacteria[J]. Environ Sci Pollut Res,2016,23(5):4868.
51 Pesquera A, Torresruiz J, Gilcrespo P P, et al. Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the valdeflores area (Cáceres, Spain)[J]. Am Mineralogist, 2015,84:55.
52 Schumacher J C. The geothermobarometric potential of tourmaline, based on experimental and natural data[J]. Am Mineralogist,2015,94:761.
53 Liu J, Meng J, Liang J, et al. Effect of tourmaline-doped on the far infrared emission of iron ore tailings ceramics[J]. J Nanosci Nanotechnol,2016,16(4):3777.
54 Ikhmayies S J, Li B, et al.Electrical effect and inf-luence factors of tourmaline[M].New York:John Wiley Sons, Inc.,2016:53.
55 Ikegami M, Guo S, Matsumura K, et al. Light reflection behavior of ZrB2 -based composites with SiC particles[J]. J Am Ceram Soc,2012,95(2):469.
56 Chang J K, Hyung D C, Suh K S, et al. Electrical properties and electromagnetic shielding effectiveness of milled carbon fiber/nylon composites[J]. Polym Korea,2003,27(3):201.
57 Yuan C L, Liu X Y, Zhou C R, et al. Characterization of the BaBiO3-doped BaTiO3 positive temperature coefficient of a resistivity ceramic using impedance spectroscopy with Tc=155℃[J]. Chin Phys B,2011,20(4):543.
58 邵海军. 电气石功能复合材料研究进展与发展前景分析[C]//首届全国智慧城市建设应用高峰论坛论文集(上册). 北京: 世界图书出版公司,2016:95.
59 Xu Wenjun. Study on preparation and application of electromagnetic radiation shielding materials of containing Ni-Cu-coated glass fiber[D]. Chengdu: Chengdu University of Technology,2015(in Chinese).
胥文军. 防电磁辐射用镀镍铜玻璃纤维的制备与应用研究[D]. 成都: 成都理工大学, 2015.
60 Li Y, Hu Y, Liu Y, et al. Preparation of tourmaline-containing functional copolymerp (TUC/BA/MMA) and its performances[J]. Soft Mater,2016,14(2):57.
61 Aremu B R, Adegbite A E, Babalola O O. Magnesium calcium tourmaline[M].DE: Springer Berlin Heidelberg,2014:234.
62 Wang Jingjing, Ye Zhangji. Feasibility study on the application of environmental-friendly tourmaline in antifouling coating[J]. Dev Appl Mater,2013,28(1):49(in Chinese).
王晶晶, 叶章基. 新型环保电气石材料应用于防污涂料中的可行性研究[J]. 材料开发与应用,2013,28(1):49.
63 Lan F, Ma B, Li W, et al. Preparation of nano tourmaline surface treatment agent and its application on functional wall fabrics[J]. Matec Web Conferences,2016,67:1.
[1] 邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强, 周亚松. 碳化钼的结构、制备及应用研究进展[J]. 材料导报, 2024, 38(5): 22080058-18.
[2] 陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
[3] 刘雨昕, 胡倩, 粟茵, 文麒麟, 刘丽欣, 覃钺, 梁露露, 张宏志, 朱静. 具有高热稳定性Sm3+激活硼磷酸盐Na3B6PO13橙红色荧光粉的发光特性[J]. 材料导报, 2024, 38(21): 23080106-6.
[4] 魏亚洲, 刘一凡, 李翔龙. 电火花放电法合成Cu0.81Ni0.19合金的性能研究[J]. 材料导报, 2023, 37(9): 21080057-6.
[5] 董煜, 刘跃军, 崔玲娜, 刘小超, 范淑红, 李霞. 拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响[J]. 材料导报, 2023, 37(9): 21050030-8.
[6] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[7] 刘嘉航, 吕哲, 周艳文, 解志文, 陈浩, 程蕾. 用于热障涂层的高熵陶瓷材料研究进展[J]. 材料导报, 2023, 37(22): 22060081-11.
[8] 晏彩先, 许明明, 陈祝安, 王姿奥, 刘伟平, 常桥稳. 新型铱配合物[Ir(pmppy)2(Br2bpy)]PF6的合成、晶体结构及光物理性能测试[J]. 材料导报, 2022, 36(Z1): 21090264-5.
[9] 王鼎, 周艳文, 张开策, 粟志伟, 杜峰, 武俊生, 郭诚. 离子氮化中氮在典型钢中的扩散行为研究[J]. 材料导报, 2022, 36(Z1): 22010109-6.
[10] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[11] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[12] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[13] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[14] 张娜, 韩筱玉, 梁金生, 李艳, 孟军平, 张红. 非金属矿物材料脱霉性能评价方法研究进展[J]. 材料导报, 2020, 34(5): 5078-5084.
[15] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed