Environmental Functionalities of Tourmaline and Applications of Its Functional Composites
LIN Sen1,2,3, SUN Shiyong1,2,3, SHEN Kexuan1,2, DONG Faqin1,3
1 Institute of Non-metallic Minerals, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010; 2 Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010; 3 Sichuan Provincial Engineering Laboratory of Non-metallic Mineral Powder Modification and High Efficiency Utilization, Mianyang 621010
Abstract: Tourmaline is one of the most important silicate minerals in the group of non-metallic minerals as a non-renewable natural mineral. The tourmaline crystal has distinctive characteristics including complex chemical composition,polymorph and color diversity. Tourmaline presents pyroelectric, piezoelectric,spontaneous polarization and negative ionreleasing, which originate from its composition and structural properties. In recent years, it has become a hot topic to prepare various functional composites utilizing tourmaline′s environmental functionalities. This paper provides a summary over the unique physical and chemical properties, and environmental functionalities of tourmaline, based on its origin, classification,crystal composition and microstructure. Furthermore it describes tourmaline′s various applications in the fields of environmental pollution and relevant key issues, also makes a prospect on the development of tourmaline functional composites.
林森, 孙仕勇, 申珂璇, 董发勤. 电气石的环境功能属性及其复合功能材料应用研究*[J]. 《材料导报》期刊社, 2017, 31(13): 131-137.
LIN Sen, SUN Shiyong, SHEN Kexuan, DONG Faqin. Environmental Functionalities of Tourmaline and Applications of Its Functional Composites. Materials Reports, 2017, 31(13): 131-137.
1 Kubo T. Tourmaline group crystals reaction with water[J]. Ferroelectrics,1992,137(1-4):13. 2 Redler C, Irouschek A, Jeffries T, et al. Origin and formation of tourmaline-rich cordierite-bearing metapelitic rocks from alpe sponda, central alps (switzerland)[J]. J Petrol, 2016,57(2):277. 3 Yang S Y, Jiang S Y, Palmer M R. Chemical and boron isotopic compositions of tourmalinefrom the nyalam leucogranites, south tibetan himalaya: Implication for their formation from B-rich melt to hydrothermal fluids[J]. Chem Geol,2015,419:102. 4 胥焕岩. 电气石环境属性应用[M]. 哈尔滨: 哈尔滨地图出版社,2010:75. 5 Henry D J, Novák M, et al. Nomenclature of the tourmaline-supergroup minerals[J]. Am Mineralogist,2015,96(5-6):895. 6 Lonoox D L. Formation of tourmaline-rich gem pockets in miarolitic pegmatites[J]. Adv Mater,2015,27(2):396. 7 Fuchs Y, et al. Fe-tourmaline synthesis under different T and fO2conditions[J]. Am Mineralogist,2015,83(5-6):525. 8 Zhang Hongchen. Thermal behavior of tourmaline at high tempreature[D]. Tianjin: Hebei University of Technology,2015(in Chinese). 张洪臣. 电气石的高温热行为研究[D]. 天津: 河北工业大学,2015. 9 潘兆橹. 结晶学及矿物学[M]. 北京: 地质出版社,1993:32. 10 Wang Sheng. Study on preparability test of granite pegmatite tourmaline[J]. Min Eng,2015, 13(4):34(in Chinese). 王晟. 花岗伟晶岩型电气石可选性试验研究[J]. 矿业工程,2015,13(4):34. 11 Dong Faqin, He Dengliang, Yuan Changlai. The environmental functional property and trends of application of tourmaline[J]. J Funct Mater,2005,36(10):1485(in Chinese). 董发勤, 何登良, 袁昌来. 电气石的环境功能属性及应用[J]. 功能材料,2005,36(10): 1485. 12 Setkova T V, Shapovalov Y B, Balitskii V S. Experimental growth and structural-morphological characteristics of co-tourmaline[J]. Doklady Earth Sci,2009,424(1): 82. 13 Lussier A J, et al. The crystal chemistry of ‘wheatsheaf’ tourmaline from mogok, myanmar[J].Mineral Mag,2016,75(1): 65. 14 Catalan G, Lubk A, et al. Flexoelectric rotation of polarization in ferroelectric thin films[J]. Nat Mater,2011,10(12):963. 15 Wu Ruihua, Tang Yunhui, Zhang Xiaohui. The electrostatic field effect of tourmaline particles and the prospect of its application to environmental protection field[J]. Acta Petrol Mineral,2001,20(4):474(in Chinese). 吴瑞华, 汤云晖, 张晓晖. 电气石的电场效应及其在环境领域中的应用前景[J]. 岩石矿物学杂志,2001,20(4):474. 16 Berryman E J, Wunder B, Ertl A, et al. Influence of the X-site composition on tourmaline′s crystal structure: Investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy[J]. Phys Chem Miner,2016,43(2):83. 17 Drivenes K, Larsen R B, Müller A, et al. Late-magmatic immiscibi-lity during batholith formation: Assessment of B isotopes and trace elements in tourmaline from the land′s end granite, SW England[J]. Contrib Mineral Petrol,2015,169(6):1. 18 Li J, et al. A novel technology for remediation of PBDEs contaminated soils using tourmaline-catalyzed Fenton-like oxidation combined with P. chrysosporium[J]. Chem Eng J,2016,296:319. 19 Voigt R G, Llorente A M, Jensen C L, et al.A randomized, double-blind, placebo-controlled trial of docosahexaenoic acid supplementation in children with attention-deficit/hyperactivity disorder[J]. J Pediatr,2001,139(2):189. 20 Henry D J, Dutrow B L, Selverstone J. Compositional polarity in replacement tourmaline—An example from the tauern window, eas-tern alps[J].Am Mineralogist,2002,4(12):52. 21 Liu Zhiguo. Effect of heat treatment on the surface free energy of tourmaline powders[D]. Tianjin: Hebei University of Technology,2007(in Chinese). 刘志国. 热处理对电气石粉体表面自由能的影响研究[D]. 天津: 河北工业大学,2007. 22 He Dengliang, Dong Faqin, Liu Jiaqin, et al. Development and application of far infrared functional materials[J]. J Funct Mater,2008,39(5):709(in Chinese). 何登良, 董发勤, 刘家琴, 等. 远红外功能材料的发展与应用[J]. 功能材料,2008,39(5): 709. 23 Vereshchagin O S, Ertl A, Giester G, et al. Structural and chemical investigation of a zoned synthetic Cu-rich tourmaline[J]. Can Mine-ralogist,2015,53(2):209. 24 Vereshchagin O S, Frankkamenetskaya O V, Rozhdestvenskaya I V. Crystal structure and stability of Ni-rich synthetic tourmaline. Distribution of divalent transition-metal cations over octahedral positions[J]. Mineral Mag,2015,79(4):997. 25 Wang Saifei. Preparation of rare earth tourmaline composite and its catalytic oxidation of methane[D]. Tianjin: Hebei University of Technology,2015(in Chinese). 王赛飞. 稀土电气石复合材料的制备及催化氧化甲烷性质的研究[D]. 天津: 河北工业大学,2015. 26 Yu Miao, Feng Chengyou, Liu Hongchuan, et al. Mineralogy, element geochemistry and genesis of tourmaline from galinge skarn deposit, qinghai province[J]. Miner Depos,2016, 35(1):69(in Chinese). 于淼, 丰成友, 刘洪川, 等. 青海尕林格铁矿床电气石矿物学、元素地球化学及成因研究[J]. 矿床地质,2016,35(1):69. 27 Jiang S Y, Radvanec M, Nakamura E, et al. Chemical and boron isotopic variations of tourmaline in the hnilec granite-related hydrothermal system, slovakia:Constraints on magmatic and metamorphic fluid evolution[J]. Lithos,2008,106(1):1. 28 Feng Y W, Shang Y P. Effects of fine tourmaline particles on photocatalytic activity of nano-sized TiO2 powders[J]. Mater Res Innov,2016,19(10):10. 29 Chang Ying. The research ofremediation of PAHs and OCPs pollution of sediment in soil by tourmaline combined with microbial[D]. Tianjin: Nankai University,2012(in Chinese). 常颖. 电气石联合微生物对沉积物物土壤中PAHs和OCPs污染修复研究[D]. 天津: 南开大学,2012. 30 Wang C, Zhang Y, Yu L, et al. Oxidative degradation of azo dyes using tourmaline[J]. J Hazard Mater,2013,260(18):851. 31 Bian X, Ji R. Photocatalytic degradation of methyl blue by tourmaline-coated TiO2 nanoparticles[J].Desalination Water Treat,2015, 12(35): 1. 32 Zhang Yang, Wang Yong, Zhang Zhimin, et al. Study on the inf-luence factors and mechanism of regulation of pH by tourmaline through heat treatment[J]. Green Living, 2014, 22(81): 154 (in Chinese). 张阳, 王勇, 张志敏, 等. 热处理电气石调节pH的影响因素及机理研究[J]. 环境与生活, 2014, 22(81): 154. 33 Zhang Wei, Dong Faqin. Characteristics of Sr2+ adsorption by tourmaline[J]. Hubei Agric Sci,2015, 54(23):6018 (in Chinese). 张伟, 董发勤. 电气石对溶液中Sr2+的吸附行为研究[J]. 湖北农业科学, 2015, 54(23): 6018. 34 Zhang Qing, Li Hui, Feng Yanwen, et al. Study on the treatment of lead storage battery wastewater by tourmaline powder adsorption[J]. Ind Water Treat,2015,35(3):68(in Chinese). 张青, 李慧, 冯艳文, 等. 电气石粉吸附处理铅蓄电池废水的研究[J]. 工业水处理,2015, 35(3):68. 35 Yue J, Wang Y, Feng X, et al. Effect of tourmaline on trichloroethylene degradation with dechlorinating bacteria[J]. Environ Prot Chem Ind,2015,35(3):226. 36 Huang Fengping, Wang Shuai, Zhang Shuang, et al. Preparation of tourmaline/TiO2 nanotube composites by hydrothermal method and its photocatalytic performance[J]. J Chin Ceram Soc, 2015,43(7):904(in Chinese). 黄凤萍, 王帅, 张双, 等. 水热法制备电气石/TiO2纳米管及光催化性能[J]. 硅酸盐学报, 2015,43(7):904. 37 Zhang J. The role of tourmaline particles in the moving bed bioreator for coking wastewater treatment[J]. Appl Mech Mater,2013,321-324(7):192. 38 Qiu Shan, Zhou Yi, Yang Jixian, et al. Study on the effect of tourmaline spontaneous polarity on water pH and the growth of nitrosomonas[J]. Environ Pollut Control,2013,35(8):14(in Chinese). 邱珊, 周义, 杨基先, 等. 电气石自发电极性对溶液pH和亚硝化胞菌生长影响研究[J]. 环境污染与防治,2013,35(8):14. 39 Zhou Guojun, Lin Ying, Lv Yuepeng, et al. Preparation and application of lithium tourmaline/glass composite material[J]. J Jilin Univ:Earth Sci Ed,2015(S1):127(in Chinese). 周国君, 林瑛, 吕月鹏, 等. 锂电气石/玻璃复合材料的制备与应用[J]. 吉林大学学报: 地球科学版,2015(S1):127. 40 Liu Xinwei, Chen Yong, Li Hui. Preparation and photocatalytic activity of N and La co-doped nano TiO2/tourmaline composites[J]. Acta Mater Compos Sin,2016,33(4):875(in Chinese). 刘欣伟, 陈勇, 李慧, 等. N与La共掺杂纳米TiO2/电气石复合材料的制备及其光催化性能[J]. 复合材料学报,2016,33(4): 875. 41 Du Bing, Wei Qufu, Zheng Laijiu. Preparation of tourmaline/sodium alginate/poly (vinyl alcohol) fiber by electrospun technology[J]. New Chem Mater,2015,43(5):40(in Chinese). 杜冰, 魏取福, 郑来久. 基于静电纺丝制备电气石/海藻酸钠/聚乙烯醇复合纤维[J]. 化工新型材料,2015,43(5):40. 42 Yu Z Q, Chen J F, Yang W H, et al. Study on toothpaste products used in the tourmaline material[J]. Guangzhou Chem Ind,2015,43(1):85(in Chinese). 于志强,陈健芬,杨伟浩,等.电气石负离子材料用于牙膏产品中的研究[J]. 广州化工,2015,43(1):85. 43 Cheng Jian. Study on preparation of tourmaline aqueous slurry and the application in the cotton fabric finishing[D]. Hangzhou: Zhejiang Science and Technology University,2016(in Chinese). 程健. 电气石水性浆料的制备及在棉织物整理中的应用研究[D]. 杭州: 浙江理工大学, 2016. 44 Xi Boan. Discussion on the improvement of negative air ions release from tourmaline[J]. China Non-metal Min Ind,2015(2):19(in Chinese). 席伯安. 增强电气石释放负氧离子功能的探讨[J]. 中国非金属矿工业导刊,2015(2):19. 45 Hu Y M, Chen X B, Tang M R. Research development and prospects of functional tourmaline composites[J]. Earth Sci Front,2014,21(5):331(in Chinese). 胡应模,陈旭波,汤明茹.电气石功能复合材料研究进展及前景展望[J]. 地学前缘,2014,21(5):331. 46 He Dengliang, Liu Laibao, Huang Chunmei, et al. Study on the antibacterial performance and mechanism of Ag/tourmaline composite powders[J]. J Mineral Petrol,2016,36(1):115(in Chinese). 何登良, 刘来宝, 黄春梅, 等. 银离子包覆电气石复合粉体的抗菌性能及机理研究[J]. 矿物岩石,2016,36(1):115. 47 徐红, 胡慧玲, 汪辉, 等. 托玛琳抗菌保健热熔絮片: CN201310553472.5[P].2014-02-19. 48 张杰, 庄可香, 魏国营. 一种长效抗菌保健型密度板: CN201410439699.1[P].2015-01-28. 49 An Zhenhua, Xu Lijia, Zhang Yi. Degradation effects of three kinds of tourmaline on microcystins-LR under different temperature treatments[J]. Mod Agric Sci Technol,2016(10): 163(in Chinese). 安振华, 徐立佳, 张易. 3种电气石粉成分测定及不同温差下对微囊藻毒素(MC-LR)的降解研究[J]. 现代农业科技,2016(10):163. 50 Wang W, Jiang H, Zhu G, et al. Effect of tourmaline on denitrification characteristics of hydrogenotrophic bacteria[J]. Environ Sci Pollut Res,2016,23(5):4868. 51 Pesquera A, Torresruiz J, Gilcrespo P P, et al. Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the valdeflores area (Cáceres, Spain)[J]. Am Mineralogist, 2015,84:55. 52 Schumacher J C. The geothermobarometric potential of tourmaline, based on experimental and natural data[J]. Am Mineralogist,2015,94:761. 53 Liu J, Meng J, Liang J, et al. Effect of tourmaline-doped on the far infrared emission of iron ore tailings ceramics[J]. J Nanosci Nanotechnol,2016,16(4):3777. 54 Ikhmayies S J, Li B, et al.Electrical effect and inf-luence factors of tourmaline[M].New York:John Wiley Sons, Inc.,2016:53. 55 Ikegami M, Guo S, Matsumura K, et al. Light reflection behavior of ZrB2 -based composites with SiC particles[J]. J Am Ceram Soc,2012,95(2):469. 56 Chang J K, Hyung D C, Suh K S, et al. Electrical properties and electromagnetic shielding effectiveness of milled carbon fiber/nylon composites[J]. Polym Korea,2003,27(3):201. 57 Yuan C L, Liu X Y, Zhou C R, et al. Characterization of the BaBiO3-doped BaTiO3 positive temperature coefficient of a resistivity ceramic using impedance spectroscopy with Tc=155℃[J]. Chin Phys B,2011,20(4):543. 58 邵海军. 电气石功能复合材料研究进展与发展前景分析[C]//首届全国智慧城市建设应用高峰论坛论文集(上册). 北京: 世界图书出版公司,2016:95. 59 Xu Wenjun. Study on preparation and application of electromagnetic radiation shielding materials of containing Ni-Cu-coated glass fiber[D]. Chengdu: Chengdu University of Technology,2015(in Chinese). 胥文军. 防电磁辐射用镀镍铜玻璃纤维的制备与应用研究[D]. 成都: 成都理工大学, 2015. 60 Li Y, Hu Y, Liu Y, et al. Preparation of tourmaline-containing functional copolymerp (TUC/BA/MMA) and its performances[J]. Soft Mater,2016,14(2):57. 61 Aremu B R, Adegbite A E, Babalola O O. Magnesium calcium tourmaline[M].DE: Springer Berlin Heidelberg,2014:234. 62 Wang Jingjing, Ye Zhangji. Feasibility study on the application of environmental-friendly tourmaline in antifouling coating[J]. Dev Appl Mater,2013,28(1):49(in Chinese). 王晶晶, 叶章基. 新型环保电气石材料应用于防污涂料中的可行性研究[J]. 材料开发与应用,2013,28(1):49. 63 Lan F, Ma B, Li W, et al. Preparation of nano tourmaline surface treatment agent and its application on functional wall fabrics[J]. Matec Web Conferences,2016,67:1.