Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 126-130    https://doi.org/10.11896/j.issn.1005-023X.2017.01.017
  新材料新技术 |
适用于生物体系的自驱动纳米技术研究进展
赵 兵,祁 宁,张德锁,李青松,张克勤
苏州大学纺织与服装工程学院,苏州 215021
Progress on Self-driven Nanotechnology for Biological Systems
ZHAO Bing, QI Ning, ZHANG Desuo, LI Qingsong, ZHANG Keqin
College of Textile and Clothing Engineering, Soochow University, Suzhou 215021
下载:  全 文 ( PDF ) ( 1475KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着纳米科技的快速发展,出现了不少可用于生物体系的植入式纳米器件,因而开发一种全新的、与植入式纳米器件相匹配的纳米供能系统意义重大。自驱动纳米技术可以从环境中收集能量转化为电能,实现能量自给,有望成为植入式纳米器件能源问题的有效解决方案。对纳米发电机、生物燃料电池、太阳能电池这3种自驱动纳米技术的研究现状、面临问题以及未来研究方向进行了综述,以期为自驱动纳米技术的应用与发展提供参考和借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵 兵
祁 宁
张德锁
李青松
张克勤
关键词:  自驱动  植入  纳米发电机  生物燃料电池  太阳能电池    
Abstract: Increasing implantable nanosystems can be applied to biological systems due to the rapid development of nanotech-nology. Therefore, it is important to develop new energy nanosystems in this area. Self-driven nanotechnologies can collect energy from the environment and convert into electric power as a self-power-supported device, which is expected to become an effective solution for powering implantable nanosystems. In this paper, systematical summary has been reported on current research status, confronting problems and future research directions of nanogenerators, biofuel batteries and solar cells for further application and deve-lopment of self-driven nanotechnologies.
Key words:  self-driven    implanted    nanogenerators    biological fuel cells    solar cells
出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51503137;51373110);江苏高校优势学科建设工程资助项目
作者简介:  赵兵:男,1984年生,博士研究生,研究方向为无机功能纳米材料及其应用 E-mail:zhaobing@suda.edu.cn 张克勤:通讯作者,男,1972年生,教授,博士研究生导师,研究方向为功能纤维材料 E-mail:kqzhang@suda.edu.cn
引用本文:    
赵 兵, 祁 宁, 张德锁, 李青松, 张克勤. 适用于生物体系的自驱动纳米技术研究进展[J]. 材料导报, 2017, 31(1): 126-130.
ZHAO Bing, QI Ning, ZHANG Desuo, LI Qingsong, ZHANG Keqin. Progress on Self-driven Nanotechnology for Biological Systems. Materials Reports, 2017, 31(1): 126-130.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.017  或          https://www.mater-rep.com/CN/Y2017/V31/I1/126
1 Ben Amar A, Kouki A B, Cao H. Power approaches for implantable medical devices[J]. Sensors,2015,15(11):28889.
2 Hannan M A, Mutashar S, Samad S A, et al. Energy harvesting for the implantable biomedical devices: Issues and challenges[J]. Bio-med Eng OnLine,2014,13:79.
3 Wang Z L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics[J]. Adv Funct Mater,2008,18(22):3553.
4 Xu Qi, Gu Long, Qin Yong. Flexible piezoelectric nanogenerators[J]. Chinese Sci Bull,2016(12):1288(in Chinese).
徐奇,顾陇,秦勇.柔性压电纳米发电机[J].科学通报,2016(12):1288.
5 Hu Y, Wang Z L. Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors[J]. Nano Energy,2015,14:3.
6 Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxi-de nanowire arrays[J]. Science,2006,312(5771):242.
7 Wang Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano,2013,7(11):9533.
8 Pan Chunxu, Li Weiping, Zhang Yupeng, et al. Research progress on nanogenerators based on nanomaterials and nanostructures[J]. J Inorg Mater,2014(9):897(in Chinese).
潘春旭,李伟平,张豫鹏,等.基于纳米材料与纳米结构的纳米电源研究进展[J]. 无机材料学报,2014(9):897.
9 Wang X, Song J, Liu J, et al. Direct-current nanogenerator driven by ultrasonic waves[J]. Science,2007,316(5821):102.
10 Qin Y, Wang X, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature,2008,451(7180):805.
11 Yang R, Qin Y, Dai L, et al. Power generation with laterally pac-kaged piezoelectric fine wires[J]. Nat Nanotechnol,2009,4(1):34.
12 Zhu G, Yang R, Wang S, et al. Flexible high-output nanogenerator based on lateral ZnO nanowire array[J]. Nano Lett,2010,10(8):3151.
13 Hu Y, Zhang Y, Xu C, et al. High-output nanogenerator by ratio-nal unipolar assembly of conical nanowires and its application for dri-ving a small liquid crystal display[J]. Nano Lett,2010,10(12):5025.
14 Zhu G, Wang A C, Liu Y, et al. Functional electrical stimulation by nanogenerator with 58 V output voltage[J]. Nano Lett,2012,12(6):3086.
15 Chen X, Xu S, Yao N, et al. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers[J]. Nano Lett,2010,10(6):2133.
16 Yang Ya, Yang Wanlu. Hybridized electromagnetic-triboelectric nanogenerator[J]. Chinese Sci Bull,2016(12):1268(in Chinese).
杨亚,杨婉璐.复合型电磁-摩擦纳米发电机[J]. 科学通报,2016(12):1268.
17 Guo Yinben, Zhang Qinghong, Li Yaogang, et al. Progress of the research on wearable triboelectric nanogenerator[J]. Mater China,2016(2):91(in Chinese).
郭隐犇,张青红,李耀刚,等.可穿戴摩擦纳米发电机的研究进展[J].中国材料进展,2016(2):91.
18 Fan F, Tian Z, Wang Z L. Flexible triboelectric generator[J]. Nano Energy,2012,1(2):328.
19 Huang T, Wang C, Yu H, et al. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyviny-lidene fluoride piezoelectric nanofibers[J]. Nano Energy,2015,14:226.
20 Hu Y, Yang J, Niu S, et al. Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting[J]. ACS Nano,2014,8(7):7442.
21 Li X, Lin Z, Cheng G, et al. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor[J]. ACS Nano,2014,8(10):10674.
22 Kim S K, Bhatia R, Kim T, et al. Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators[J]. Nano Energy,2016,22:483.
23 Kuang S Y, Chen J, Cheng X B, et al. Two-dimensional rotary triboelectric nanogenerator as a portable and wearable power source for electronics[J]. Nano Energy,2015,17:10.
24 Zhang Yue. Rapid development of micro and nano energy technology[J]. Chinese Sci Bull,2016(12):1267(in Chinese).
张跃.快速发展的微纳能源技术[J].科学通报,2016(12):1267.
25 Li Z, Zhu G, Yang R, et al. Muscle-driven in vivo nanogenerator[J]. Adv Mater,2010,22(23):2534.
26 Zheng Q, Shi B, Fan F, et al. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator[J]. Adv Mater,2014,26(33):5851.
27 Zheng Q, Zou Y, Zhang Y, et al. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source[J]. Sci Adv,2016,2(3):1501478.
28 Li Z, Yang R, Yu M, et al. Cellular level biocompatibility and biosafety of ZnO nanowires[J]. J Phys Chem C,2008,112(51):20114.
29 Yuan M, Cheng L, Xu Q, et al. Biocompatible nanogenerators through high piezoelectric coefficient 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7-Ca0.3)TiO3 nanowires for in-vivo applications[J]. Adv Mater,2014,26(44):7432.
30 Cheng L, Yuan M, Gu L, et al. Wireless, power-free and implan-table nanosystem for resistance-based biodetection[J]. Nano Energy,2015,15:598.
31 Zhang Wei, Diao Liwei, Chen Hang, et al. Application of piezoelectric nanogenerators in implantable electronic devices[J]. Beijing Bio-med Eng,2013(5):541(in Chinese).
张巍,刁力为,陈航,等.纳米压电发电技术在人体植入式电子设备中的应用[J].北京生物医学工程,2013(5):541.
32 Liu Haitao, Zhang Yingjiu, Pan Caofeng. Self-powered nanosystems based on nanofuel cell[J]. Chinese Sci Bull,2016,61(12):1298 (in Chinese).
刘海涛,张迎九,潘曹峰.基于纳米燃料电池的自供能纳米系统[J]. 科学通报,2016,61(12):1298.
33 Schroeder U. From in vitro to in vivo-biofuel cells are maturing[J]. Angew Chem Int Ed,2012,51(30):7370.
34 Katz E, Macvittie K. Implanted biofuel cells operating in vivo-me-thods, applications and perspectives-feature article[J]. Energy Environ Sci,2013,6(10):2791.
35 Falk M, Villarrubia C W N, Babanova S, et al. Biofuel cells for biomedical applications: Colonizing the animal kingdom [J]. Chemphyschem,2013,14:2045.
36 Cinquin P, Gondran C, Giroud F, et al. A glucose biofuel cell implanted in rats [J]. Plos One,2010,5(5):e104765.
37 Halamkova L, Halamek J, Bocharova V, et al. Implanted biofuel cell operating in a living snail[J]. J Am Chem Soc,2012,134(11):5040.
38 Rasmussen M, Ritzmann R E, Lee I, et al. An implantable biofuel cell for a live insect[J]. J Am Chem Soc,2012,134(3):1458.
39 Szczupak A, Halamek J, Halamkova L, et al. Living battery-Bio-fuel cells operating in vivo in clams[J]. Energy Environ Sci,2012,5(10):8891.
40 Macvittie K, Halamek J, Halamkova L, et al. From“cyborg” lobsters to a pacemaker powered by implantable biofuel cells[J]. Energy Environ Sci,2013,6(1):81.
41 Pan C, Fang Y, Wu H, et al. Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices[J]. Adv Mater,2010,22(47):5388.
42 Yang Q, Liu Y, Li Z, et al. Self-powered ultrasensitive nanowire photodetector driven by a hybridized microbial fuel cell[J]. Angew Chem Int Ed,2012,51(26):6443.
43 Hansen B J, Liu Y, Yang R, et al. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy[J]. ACS Nano,2010,4(7):3647.
44 Gai P, Ji Y, Wang W, et al. Ultrasensitive self-powered cytosensor[J]. Nano Energy,2016,19:541.
45 Tian B, Zheng X, Kempa T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature,2007,449(7164):885.
46 Greene L E, Law M, Yuhas B D, et al. ZnO-TiO2 core-shell nanorod/P3HT solar cells[J]. J Phys Chem C,2007,111(50):18451.
47 Tang J, Huo Z, Brittman S, et al. Solution-processed core-shell nanowires for efficient photovoltaic cells[J]. Nat Nanotechnol,2011,6(9):568.
48 Cui S, Yin D, Chen Y, et al. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct[J]. ACS Nano,2013,7(1):676.
49 Chen Zhigang, Kuang Xingyu, Song Linlin, et al. Research progress in NIR-light-driven nanomaterials and nanodevices [J].Chinese J Inorg Chem,2013(8):1574(in Chinese).
陈志钢,匡兴羽,宋琳琳,等.近红外光驱动的纳米材料和器件的研究进展[J].无机化学学报,2013(8):1574.
50 Wang Min, Wang Wubin, Wu Liang, et al. Up-conversion nanomaterials and their applications of enhancing photoelectric efficiency in solar cells [J]. Mater Rev:Rev,2015,29(8):142(in Chinese).
王敏,王武斌,吴靓,等.上转换纳米材料及其在提高太阳能电池光电效率中的应用[J].材料导报:综述篇,2015,29(8):142.
51 Chen Z, Zhang L, Sun Y, et al. 980-nm laser-driven photovoltaic cells based on rare-earth up-converting phosphors for biomedical applications[J]. Adv Funct Mater,2009,19(23):3815.
52 Zhang L, Tian Q, Xu W, et al. Construction of 980 nm laser-driven dye-sensitized photovoltaic cell with excellent performance for powering nanobiodevices implanted under the skin[J]. J Mater Chem,2012,22(35):18156.
53 Wu J, Chen F, Chuang M, et al. Near-infrared laser-driven polymer photovoltaic devices and their biomedical applications[J]. Energy Environ Sci,2011,4(9):3374.
54 Wu J, Chen F, Chang S, et al. Upconversion effects on the perfor-mance of near-infrared laser-driven polymer photovoltaic devices[J]. Org Electron,2012,13(10):2104.
55 Zhao B, Qi N, Zhang K Q, et al. Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4∶Yb,Er nanocomposites with metal-enhanced fluorescence behavior[J]. Phys Chem Chem Phys,2016,18(22):15289.
56 Han S, Deng R, Xie X, et al. Enhancing luminescence in lanthanide-doped upconversion nanoparticles[J]. Angew Chem Int Ed,2014,53(44):11702.
[1] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[2] 戴江炫, 姬文辉, 卢嘉铖, 谢瑞杰, 李林. 汗液发电:原理、器件结构及应用[J]. 材料导报, 2025, 39(2): 24030268-16.
[3] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[4] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[5] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[6] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[7] 张昌松, 王向阳, 魏立柱, 王如鹏. 折叠结构的PVDF/BTO复合薄膜压电纳米发电机的制备及性能研究[J]. 材料导报, 2024, 38(6): 22080132-6.
[8] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[9] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[10] 王耀武, 王彬彬. 有机电子传输材料在反式钙钛矿太阳能电池中的研究现状[J]. 材料导报, 2024, 38(10): 22100210-11.
[11] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[12] 周文彩, 王伟, 刘晓鹏, 齐帅, 于浩, 曾红杰, 王川申, 魏晓俊. 透明太阳能电池的研究进展[J]. 材料导报, 2023, 37(8): 21060214-8.
[13] 成健, 廖建飞, 杨震, 孔维畅, 刘顿. 太阳能电池多晶硅表面激光制绒技术研究进展[J]. 材料导报, 2023, 37(6): 21050219-10.
[14] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[15] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed