Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 234-237    https://doi.org/10.11896/j.issn.1005-023X.2018.02.015
  物理   材料研究 |材料 |
固溶温度对TP347HFG耐热钢组织和性能的影响
张弘,周平,孙兰,范洪远
四川大学制造科学与工程学院,成都 610065
Effect of Solution Temperature on Microstructure and Properties of TP347HFG Heat Resistant Steel
Hong ZHANG,Ping ZHOU,Lan SUN,Hongyuan FAN
Department of Manufacturing Science and Engineering,Sichuan University, Chengdu 610065
下载:  全 文 ( PDF ) ( 2016KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用金相显微镜、扫描电镜、布氏硬度测试、拉伸测试等手段研究了不同固溶温度下TP347HFG钢的组织和性能。结果表明,随着固溶温度升高,TP347HFG耐热钢晶粒度降低,固溶温度为1 180 ℃时晶粒尺寸、形状均匀;固溶温度为1 210 ℃时晶粒明显长大,且尺寸不均匀;TP347HFG耐热钢第二相由大颗粒相和小颗粒相组成,其主要成分均为NbC;固溶温度为1 120 ℃和1 180 ℃时小颗粒第二相在晶界析出,对晶界强化作用显著,1 210 ℃时第二相大部分在晶粒内部析出,并有Ostwald熟化现象发生,细小第二相消溶而较大颗粒第二相变大,从而影响基体性能;固溶温度为1 120 ℃和1 180 ℃时其抗拉强度和Rp0.2最高,随着固溶温度的升高,伸长率增加而硬度降低。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张弘
周平
孙兰
范洪远
关键词:  TP347HFG耐热钢  固溶温度  组织  性能    
Abstract: 

TP347HFG heat resistant steel with different solution temperature were characterized by OM, SEM, hardness and tensile strength test, and its microstructure and corresponding properties were investigated as well. Results show that the grain size of TP347HFG heat resistant steel decreases as the solution temperature increases. Their crystalline sizes are evenly distributed with the solution temperature at 1 180 ℃, whereas the crystalline sizes increase and unevenly disperse at 1 210 ℃. The second phase of TP347HFG heat resistant steel, which is mainly NbC, is composed of both large particles and small particles. Small second phase precipitate at the grain boundary at 1 180 ℃ and 1 120 ℃, which can strengthen the grain boundaries. Most part of the second phase precipitate at 1 210 ℃ in the grains with simultaneous occurrence of the Ostwald ripening phenomenon, where the particle distribution of small second phase diminishes while that of larger one increases, and thus bringing the change of corresponding fundamental properties. The values of tensile strength and Rp0.2 reach their peaks with the solution temperature at 1 120 ℃ and 1 180 ℃. The elongation property of this material improves while its hardness decreases, as the increasing solution temperature.

Key words:  TP347HFG heat resistant steel    solution temperature    microstructure    properties
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TG142.1  
基金资助: 四川省科技支撑计划(2015GZ0055)
引用本文:    
张弘,周平,孙兰,范洪远. 固溶温度对TP347HFG耐热钢组织和性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 234-237.
Hong ZHANG,Ping ZHOU,Lan SUN,Hongyuan FAN. Effect of Solution Temperature on Microstructure and Properties of TP347HFG Heat Resistant Steel. Materials Reports, 2018, 32(2): 234-237.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.015  或          https://www.mater-rep.com/CN/Y2018/V32/I2/234
Element C Si Mn P S Ni Cr Nb Fe
Content 0.072 0.37 1.40 0.028 0.003 10.8 17.7 0.7 Bal.
表1  TP347HFG耐热钢的化学成分 (质量分数,%)
Sample 1# 2# 3# 4# 5#
Solution
temperature/℃
1 120 1 150 1 180 1 210 Non heat
treatment
Holding time/min 20
Cool type Water cooling
表2  1—5号试样热处理工艺
图1  拉伸试样尺寸(单位:mm)
图2  不同固溶处理温度下样品的金相图:(a)1 120 ℃, (b)1 150 ℃,(c)1 180 ℃,(d)1 210 ℃, (e)original sample
Solution
temperature/℃
1 120 1 150 1 180 1 210 Original
sample
M 500 500 500 200 500
P? 12.5 11.6 10.4 12.0 14.5
L/mm 140 140 140 140 140
G 7.7 7.5 7.1 4.9 8.1
表3  试样晶粒度
图3  试样的SEM图片:(a)1 120 ℃,(b)1 150 ℃,(c)1 180 ℃,(d)1 210 ℃,(e)original sample
图4  (a)大颗粒第二相及(b)小颗粒第二相成分EDS分析
Solution
temperature/℃
1 120 1 150 1 180 1 210 Original
sample
Tensile strength
MPa
489 479 489 471 459
Rp0.2/MPa 234 230 235 210 222
Elongation/% 59.7 60.1 60.2 65.8 57.5
Brinell hardness 163 156 155 149 159
表4  TP347HFG钢抗拉强度、Rp0.2、伸长率及硬度值
1 Sandhya H, Adisom A, Amomvadee V . Exergy analysis of ultra super-critical power plant[J]. Energy Procedia, 2013,37:2544.
2 Gibbons T B . Superalloys in modern power generation applications[J]. Materials Science and Technology, 2009,25(2):129.
3 Viswanathan R, Henry J F, Tanzosh J , et al. U.S.program on materials technology for ultra-supercritical coal power plants[J]. Journal of Materials Engineering and Performance, 2005,14(3):281.
4 Iseda A, Okada H, Sembah H , et al. Long term creep properties and microstructure of SUPER304H,TP347HFG and HR3C for A-USC boilers[J]. Energy Materials, 2007,2(4):199.
5 5 彭芳芳, 彭志方, 陈方玉 . 600MW/1000MW超超临界机组新型钢国产化研讨会报告文集[R]. 扬州:中国电力期刊网, 2009: 178.
6 Fu S L, Shi C C, Xi S X . Ultrasupercritical power plant development and high temperature materials applications in China[J]. Energy Materials, 2008,3(4):201.
7 Yagi K, Merckling G, Kem T U , et al. Creep properties of heat resistant steels and superalloys[M]. Berlin:Springer-Verlag, 2004: 248.
8 8 刘正东, 程世长, 王起江 , 等. 中国600 ℃火电机组锅炉钢研究进展[M]. 北京: 冶金工业出版社, 2011: 160.
9 Peng Zhifang, Dang Yingying, Peng Fangfang . Effect of carbon and niobium on phase stability and creep rupture life at 650 ℃ for TP347HFG steel[J]. Acta Metallurgica Sinica, 2012,48(4):450(in Chinese).
10 彭志方, 党莹樱, 彭芳芳 . C、Nb含量对TP347HFG钢在650 ℃析出相参量和持久寿命的影响[J]. 金属学报, 2012,48(4):450.
11 Sounmail T . Precipitation in creep resistant austenitic stainlesssteels[J]. Materials Science and Technology, 2001,17(1):1.
12 11 虞觉奇. 二元合金状态图集[M]. 上海: 上海科学技术出版社, 1983: 332.
13 Kyu H L, Jin Y S, Joo Y H , et al. Effect of Nb and Cu on the high temperature creep properties of a high Mn-N austenitic stainless steel[J]. Materials Characterization, 2013,83(3):49.
14 Onizawa T, Wakai T, Ando M , et al. Effect of V and Nb on precipitation behavior and mechanical properties of high Cr steel[J]. Nuclear Engineering and Design, 2008,238(2):408.
15 Sawaragi Y, Hirano S . The development of a new 18-8 austenitic stainless steel (0.lC-18Cr-9Ni-3Cu-Nb,N)with high elevated temperatures strength for fossil power boilers[J]. Mechanical Behavior of Materials VI, 1992,4:589.
16 Minami Y, Kimura H, Ihara Y . Microstructural changes in austenitic stainless steels during long-term aging[J]. Materials Science and Technology, 1986,2(8):795.
17 Hao Hongyuan, Cao Shirui, Hao Yao . Effect of solid solution/aging treatment on microstructure and properties of austenitic base heat resistant steel[J]. Heat Treatment of Metals, 2006,31(4):65(in Chinese).
18 郝红元, 曹士锐, 郝曜 . 固溶/时效处理对奥氏体耐热钢组织与性能的影响[J]. 金属热处理, 2006,31(4):65.
19 17 崔忠圻, 覃耀春 . 金属学与热处理[M]. 第二版.北京: 机械工业出版社, 2014. 350.
20 Glandman T . The physical metallurgyofmicro alloyed steel[M]. Cambridge: The University Press, 1997: 123.
21 19 樊东黎, 徐跃明, 佟晓辉 . 热处理技术数据手册[M]. 北京: 机械工业出版社, 2006: 123.
22 Zhang Wei . Inspection methods of austenitic grain size in stainless steel[J]. Material & Heat Treatment, 2010,39(22):66(in Chinese).
23 张卫 . 钢的奥氏体晶粒度检验方法[J]. 材料热处理技术, 2010,39(22):66.
24 Jia Hongbin, Zhang Hongmei , et al. Austenite grain growth beha-vior of fine-grain and high-strength IF steel in heating process[J]. Hot Working Technology, 2015,44(4):56(in Chinese).
25 贾宏斌, 张红梅 , 等. 加热过程中细晶高强IF钢奥氏体晶粒长大规律研究[J]. 热加工工艺, 2015,44(4):56.
26 Chen Zhenyu, Hu Chuanshun, Qin Hua , et al. Effect of heating temperature on grain size of 2.25Cr-1Mo-0.25V steel[J]. Hot Working Technology, 2013,42(4):23(in Chinese).
27 陈振宇, 胡传顺, 秦华 , 等. 加热温度对2.25Cr-1Mo-0.25V钢晶粒度的影响[J]. 热加工工艺, 2013,42(4):23.
28 Uhm S, Moom J, Lee C . Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe-C-Mn steels:Considering the effect of initial grain size on isothermal growth behavior[J]. ISIJ International, 2004,44(7):1230.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[3] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[4] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[5] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[10] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[11] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[12] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[13] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[14] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[15] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed