Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 50-55    https://doi.org/10.11896/j.issn.1005-023X.2017.06.011
  材料研究 |
木质与草本生物质燃烧特性及工况优化研究
何姗姗1, 李薇1, 王灵志1, 卢晗1, 张宏亮2
1 华北电力大学区域能源系统优化教育部重点实验室, 北京 102206;
2 广东电网公司电力科学研究院, 广州 510600
Combustion Characteristics and Working Condition Optimization for
Wood and Herb Biomass
HE Shanshan1, LI Wei1, WANG Lingzhi1, LU Han1, ZHANG Hongliang2
1 Key Laboratory of Reginal Energy System Optimization, Ministry of Education, North China Electric Power University,
Beijing 102206;
2 Guangdong Grid Electric Power Research Institute, Guangzhou 510600
下载:  全 文 ( PDF ) ( 1453KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高生物质燃料的燃烧效率,缓解生物质电厂锅炉的腐蚀问题,在不同的氧气化学当量比(14%和42%)及不同升温速率(10 ℃/min、30 ℃/min、60 ℃/min)下,采用热重-差热分析(TG-DTG)联用技术,以桉树干为基准燃料,对桉树枝、桉树皮和甘蔗渣混燃过程中的燃烧特性进行研究分析。结果表明,各燃料燃烧过程具有相似性,在同等升温速率下,桉树干在燃烧过程中表现出一定的滞后性,如10 ℃/min下M1-M5的最大失重速率在325~330 ℃之间,桉树干则在336 ℃时有最大失重速率。同时,随着氧气化学当量比的增大及升温速率的降低,各燃料的燃烧特性有所提高。此外,在14% O2条件下掺配比例较高的甘蔗渣(M2),在42% O2条件下掺配中低比例的甘蔗渣(M4)均能提高生物质燃料的前期可燃性和综合燃烧特性,但燃尽特性较差。因此,甘蔗渣等草本类植物可作为难点燃的木质类物质的助燃添加剂,为生物质电站的高效稳定运行提供一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何姗姗
李薇
王灵志
卢晗
张宏亮
关键词:  混合燃烧  生物质  热重分析  着火点  燃尽温度  可燃特性    
Abstract: In order to improve the combustion efficiency of the biomass fuel and alleviate corrosion problems in biomass power plant boiler. Under different oxygen stoichiometric ratio (14% and 42%, respectively) and different heating rates (10 ℃/min, 30 ℃/min, 60 ℃/min), using thermogravimetric analysis (TG-DTG) techniques on eucalyptus trees for fuel comparison, woody and herbaceous biomass of mixed fuel thermal cracking process and combustion characteristics were analyzed. Results show that every combustion processes are similar, under the same heating rate, eucalyptus trunk in combustion process performances a certain lag. Such as 10 ℃/min volatile at the analysis stage, M1-M5 perform maximum weight loss rate between 325-330 ℃, and eucalyptus trunk is in 336 ℃ with maximum weight loss rate. At the same time, with the increase of oxygen chemical equivalence ratio and the reduction of heating rate, the combustion characteristics of various fuels have been improved. In addition, in 14% O2 condition blen-ding a higher proportion of bagasse (M2), in 42% O2 under the condition of low mixing proportion of sugarcane bagasse (M4) can improve the early flammability and combustion characteristic, but the burnout characteristics perform poor. Therefore, bagasse and other herbaceous plants as the combustion supporting additive to ignite wood material, for the efficient and stable operation of biomass power plant to provide some suggestions.
Key words:  mixed combustion    biomass    thermogravimetric analysis    ignition temperature    burnout temperature    combustible characteristics
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TK6  
基金资助: 中央高校基本科研业务费专项资金;国家自然科学基金面上项目(61471171)
通讯作者:  李薇:女,1974年生,博士,教授,硕士研究生导师,主要从事节能减排优化控制、能源与环境系统分析、环境影响与风险评价等研究,E-mail:weili819@aliyun.com   
作者简介:  何姗姗:女,1992年生,硕士研究生,主要研究方向为新能源利用及节能减排优化控制与评价,E-mail:hduhss@126.com
引用本文:    
何姗姗, 李薇, 王灵志, 卢晗, 张宏亮. 木质与草本生物质燃烧特性及工况优化研究[J]. 《材料导报》期刊社, 2017, 31(6): 50-55.
HE Shanshan, LI Wei, WANG Lingzhi, LU Han, ZHANG Hongliang. Combustion Characteristics and Working Condition Optimization for
Wood and Herb Biomass. Materials Reports, 2017, 31(6): 50-55.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.011  或          https://www.mater-rep.com/CN/Y2017/V31/I6/50
1 Manzano-Agugliaro F, Alcayde A, Montoya F G. Scientific production of renewable energies worldwide: An overview[J]. Renewable Sustainable Energy Rev,2013,18:134.
2 Panwar N L, Kaushik S C, Kothari S. Role of renewable energy sources in environmental protection: A review[J]. Renewable Sustainable Energy Rev,2011,15(3):1513.
3 Zhang J L, Li J, Hu Z W, et al. Thermal gravimetric analysis of mixed combustion of biomass and anthracite[J]. Acta Energiae Solaris Sin,2013,34(10):1847(in Chinese).
张建良,李净,胡正文,等.生物质与无烟煤混合燃烧行为的热重分析[J].太阳能学报,2013,34(10):1847.
4 Xiong S W, Zhang S Y, Wu Q M, et al. Combustion characteristics and kinetic analysis of biomass char[J]. J Fuel Chem Technol,2013,41(8):958(in Chinese).
熊绍武,张守玉,吴巧美,等.生物质炭燃烧特性与动力学分析[J].燃料化学学报,2013,41(8):958.
5 Liang A Y, Hui S E, Xu T M, et al. TG-DTG analysis of several kinds of biomass and Study on its combustion kinetics[J]. Rene-wable Energy Resour,2008,26(4):56(in Chinese).
梁爱云,惠世恩,徐通模,等.几种生物质的TG-DTG分析及其燃烧动力学特性研究[J].可再生能源,2008,26(4):56.
6 Wang X G, Lu G W, Lu J S, et al. Experimental study on combustion characteristics of biomass and coal blending[J]. Renewable Ene-rgy Resour,2014,32(1):87(in Chinese).
王晓钢,鲁光武,路进升,等.生物质与煤掺烧燃烧特性的实验研究[J].可再生能源,2014,32(1):87.
7 Shou E G, Li S Y, Ren Q Q, et al. Study on combustion characte-ristics of biomass and coal oxygen enriched mixture[J]. Renewable Energy Resour,2014,32(10):1551(in Chinese).
寿恩广,李诗媛,任强强,等.生物质与煤富氧混合燃烧特性研究[J].可再生能源,2014,32(10):1551.
8 Varol M, Atimtay A T, Bay B, et al. Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis[J]. Thermochim Acta,2010,510(1):195.
9 Tian H, Liao Z Z. Agricultural biomass combustion characteristics and combustion dynamics[J]. Trans Chinese Soc Agric Eng,2013,29(10):203(in Chinese).
田红,廖正祝.农业生物质燃烧特性及燃烧动力学[J].农业工程学报,2013,29(10):203.
10 Tian Z F, Wang S Y, Cao Y W. Mechanism of biomass fuel combustion and the analysis of the factors affecting its combustion[J]. J Anhui Agric Sci,2014,42(2):541(in Chinese).
田仲富,王述洋,曹有为.生物质燃料燃烧机理及影响其燃烧的因素分析[J].安徽农业科学,2014,42(2):541.
11 Chen H B, Ning X A, Liao X K, et al. Analysis of heat and weight of waste and dust bag in cement plant and its morphological characteristics[J]. Acta Scientiae Circumstantiae,2013,33(7):1940(in Chinese).
陈海斌,宁寻安,廖希凯,等.水泥厂废旧除尘布袋热重分析及其形态特征[J].环境科学学报,2013,33(7):1940.
12 Liu X, Chen M, Wei Y. Kinetics based on two-stage scheme for co-combustion of herbaceous biomass and bituminous coal[J]. Fuel,2015,143:580.
13 Gai C, Zhang Y, Chen W T, et al. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae[J]. Bioresour Technol,2013,150:139.
14 Ren Minna. Experimental study on ignition and combustion characteristics of typical biomass pellet fuel[D]. Jinan: Shandong Jianzhu University,2012(in Chinese).
任敏娜.典型生物质颗粒燃料点火和燃烧特性的实验研究[D].济南:山东建筑大学,2012.
15 Varol M, Atimtay A T, Bay B, et al. Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis[J]. Thermochim Acta,2010,510(1):195.
16 Zhang L H, Duan F, Huang Y J. Thermogravimetric investigation on characteristic of biomass combustion under the effect of organic calcium compounds[J]. Bioresour Technol,2015,175:177.
17 Ning X A, Zhang N, Liu J Y. Study on combustion characteristics and kinetics of paper mill sludge mixture[J]. Acta Scientiae Circumstantiae,2011,31(7):1486(in Chinese).
宁寻安,张凝,刘敬勇.造纸污泥混煤燃烧特性及动力学研究[J].环境科学学报,2011,31(7):1486.
18 Yang Zhe. Experimental study on the effect of mixed mode on the characteristics and combustion characteristics of mixed coal particles[D]. Changsha: Changsha University of Science & Technology,2013(in Chinese).
杨哲.掺混方式对混煤颗粒特性及燃烧特性影响的实验研究[D].长沙:长沙理工大学,2013.
19 Wei W, Liao Y F, Chen T, et al. Analysis of alkali metal transfer in the process of direct burning of Eucalyptus[J]. Guangdong Electric Power,2014,27(6):13(in Chinese).
韦威,廖艳芬,陈拓,等.桉树枝直燃利用过程中碱金属迁移规律分析[J].广东电力,2014,27(6):13.
20 Zhang Linhai. Study on the processing of crop straw solid forming[D]. Beijing: China Agricultural University,2014(in Chinese).
张林海.农作物秸秆固体成型预处理研究[D].北京:中国农业大学,2014.
21 Wu K, Liu J, Wu Y, et al. Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer[J]. Bioresour Technol,2014,163:18.
22 Ahn S, Choi G, Kim D. The effect of wood biomass blending with pulverized coal on combustion characteristics under oxy-fuel condition[J]. Biomass Bioenergy,2014,71:145.
23 Chen Y, Duan J, Lin P, et al. Effect of oxygen content on combustion characteristics of typical biomass[J]. Proceed CSEE,2008,28(2):43(in Chinese).
陈祎,段佳,林鹏,等.氧量对典型生物质燃烧特性的影响[J].中国电机工程学报,2008,28(2):43.
24 Chen Y L, Han X, Zhang Y F. Study on combustion kinetics of biomass straw[J]. Eng J Wuhan University,2013,46(6):805(in Chinese).
陈义龙,韩旭,张岩丰.生物质秸秆燃烧动力学特性研究[J].武汉大学学报:工学版,2013,46(6):805.
25 Pu G, Lei Q, Xu P. Heat weight of biomass burning and dynamic characteristics of plate[J]. Chinese J Environ Eng,2012,6(7):2432(in Chinese).
蒲舸,雷强,徐鹏.板材类生物质燃烧及动力学特性热重研究[J].环境工程学报,2012,6(7):2432.
[1] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[2] 赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
[3] 唐晶晶, 李晓滢, 陈言蹊, 周柳禧, 文康, 周其杰, 陈松, 杨娟, 周向阳. 钠离子电池生物质基硬碳负极材料的研究进展[J]. 材料导报, 2024, 38(15): 23040228-13.
[4] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[5] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[6] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[7] 赵春波, 赵嵘, 戚剑飞, 庄文博, 刘婕, 陈沛, 万艳芬, 杨鹏. 面向双碳目标的水淡技术:生物质碳用于界面太阳能光蒸汽转化技术的研究进展[J]. 材料导报, 2023, 37(12): 21110158-13.
[8] 曹茂炅, 王影娴, 刘志丹. 废弃生物质基生物原油制备可再生润滑油的潜力、途径和挑战[J]. 材料导报, 2023, 37(10): 22120087-10.
[9] 桂叶, 黄雪刚, 刘洋, 李博文, 谭春玲, 张峻源, 仇浩. 农林生物质热解过程中生成气溶胶的人体细胞毒性研究进展[J]. 材料导报, 2023, 37(10): 21090293-8.
[10] 程平, 彭勇, 汪馗, 姚松, 刘志祥. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(1): 22010088-6.
[11] 王秀超, 秦莹莹, 郭红革. 生物基可降解包装薄膜的研究进展[J]. 材料导报, 2022, 36(Z1): 21070279-8.
[12] 周晶晶, 周军, 吴雷, 杨茸茸, 宋永辉, 张秋利. 生物质供氢体协助低变质煤加氢热解提质的研究进展[J]. 材料导报, 2022, 36(9): 20070237-8.
[13] 鲁猷栾, 穆新伟, 黄乐舒, 石震, 郑寅. 生物质炭材料:构建电化学传感器的理想修饰材料[J]. 材料导报, 2022, 36(6): 20070278-8.
[14] 李燕, 陈梅芹, 乔艳辉, 康新平. 废白土-花生壳生物炭吸附剂的制备及对Pb(Ⅱ) 的吸附[J]. 材料导报, 2022, 36(6): 20110276-6.
[15] 曹宗仑, 孙杰, 练越, 张淮浩. 无碱活化的生物质衍生碳:一种适应于多种金属离子的电容脱盐电极材料[J]. 材料导报, 2022, 36(24): 21110062-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed