Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 101-104    https://doi.org/10.11896/j.issn.1005-023X.2017.02.022
  材料研究 |
CSW/POE-g-MA/PA6三元复合材料的结构和性能
孙文奎1, 周松1, 马俊辉2, 闫珂华1, 王君1, 陈浩1
1 西南石油大学材料科学与工程学院, 成都 610500;
2 成都产品质量检验研究院有限责任公司, 成都 610015;
Structure and Properties of CSW/POE-g-MA/PA6 Ternary Composites
SUN Wenkui1, ZHOU Song1, MA Junhui2, YAN Kehua1, WANG Jun1, CHEN Hao1
1 School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500;
2 Chengdu Institute of Product Quality Inspection Co.,Ltd, Chengdu 610015;
下载:  全 文 ( PDF ) ( 1319KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用马来酸酐接枝乙烯-辛烯共聚物(POE-g-MA)对CaSO4晶须/尼龙6(CSW/PA6)共混物增韧改性,研究了CSW/PA6和CSW/POE-g-MA/PA6复合材料的力学性能、热性能、形貌和加工性能。适量添加CSW可同时提高PA6的刚性和韧性。与纯PA6性能比较,10%CSW/PA6的拉伸强度、弯曲强度、弯曲模量和冲击强度分别增大7.5%、9.1%、21.1%和11.6 %;当CSW含量增至30%,CSW/PA6的韧性明显降低。POE-g-MA可促进PA6基体中CSW的均匀分散,增强CSW与PA6的界面粘附,提高CSW/PA6(30/70)的冲击韧性。源于CSW和POE-g-MA的协同作用,CSW/POE-g-MA/PA6(30/5/65)的冲击强度和弯曲模量与纯PA6相比较,分别提高了36.8%和22.1%,拉伸和弯曲强度接近纯PA6。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙文奎
周松
马俊辉
闫珂华
王君
陈浩
关键词:  CaSO4晶须  尼龙6  马来酸酐接枝乙烯-辛烯共聚物  性能    
Abstract: Maleic anhydride grafted polyethylene-octene copolymer (POE-g-MA) was used to toughen calcium sulfate whis-ker/nylon 6 (CSW/PA6) composites, and mechanical, thermal, morphological properties and processing performance of CSW/PA6 and CSW/POE-g-MA/PA6 composites were studied. The results indicated that the addition of appropriate CSW could increase both the stiffness and toughness of PA6. Compared with those of pure PA6, tensile strength, flexural strength, flexural modulus and notched impact strength of 10%CSW/PA6 composites increased by 7.5%,9.1%,21.1% and 11.6%, respectively. However, when CSW content increased to 30%, the impact strength of PA6 decreased significantly. The presence of POE-g-MA promoted the homogeneous distribution of CSW in PA6 matrix, also enhanced the interfacial adhesion between CSW and PA6, resulting in significant improvement of impact strength of CSW/PA6 (30/70) composites. Due to the synergistic effect of CSW and POE-g-MA, the notched impact strength and flexural modulus of CSW/POE-g-MA/PA6 (30/5/65) composites increased by 36.8% and 22.1% compared with pure PA6, and its tensile and flexural strength were close to those of pure PA6.
Key words:  calcium sulfate whisker    nylon 6    maleic anhydride grafted polyethylene-octene copolymer    properties
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TQ342+.11  
作者简介:  孙文奎:男,1987年生,硕士研究生,主要研究方向为尼龙及聚烯烃复合材料的结构和性能 E-mail:1025757689@qq.com 周松:通讯作者,男,1967年生,博士,副研究员,主要研究方向为聚合物结构与性能 E-mail:song_zhou889@163.com
引用本文:    
孙文奎, 周松, 马俊辉, 闫珂华, 王君, 陈浩. CSW/POE-g-MA/PA6三元复合材料的结构和性能[J]. 《材料导报》期刊社, 2017, 31(2): 101-104.
SUN Wenkui, ZHOU Song, MA Junhui, YAN Kehua, WANG Jun, CHEN Hao. Structure and Properties of CSW/POE-g-MA/PA6 Ternary Composites. Materials Reports, 2017, 31(2): 101-104.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.022  或          https://www.mater-rep.com/CN/Y2017/V31/I2/101
1 Courtney T H. Mechanical behavior of materials [M].New York: McGraw-Hill Science,1999:83.
2 Yang M, Luo S K, Deng Z P,et al.Applications of whiskers in poly-mer composites [J].Mater Rev:Rev,2014,28(2):51(in Chinese).
杨萌,罗世凯,邓昭平,等.晶须在聚合物复合材料中的应用[J].材料导报:综述篇,2014,28(2):5.
3 Tjong S C, Meng Y Z. Performance of potassium titanate whisker reinforced polyamide-6 composites [J]. Polymer,1998,39(22):5461.
4 Liu J Y, Reni L, Wu J L, et al. Fabrication and characterization of polycaprolactone/calcium sulfate whisker composites [J]. Express Polym Lett,2011,5(8):742.
5 He M, Wang L E, Lu S J, et al. Properties of calcium sulfate whisker-modified low melting point nylon6 composite [J]. Plastics,2010,39(4):24(in Chinese).
何敏,王丽娥,鲁圣军,等.硫酸钙晶须改性低熔点PA6复合材料的性能[J].塑料,2010,39(4):24.
6 Shao H J, Qin S H, Yu J, et al. Influence of grafting degree on the morphology and mechanical properties of PA6/POE-g-GMA blends [J].Polym-Plast Technol Eng,2012,51(1):28.
7 Wang K, Wang C, Li J, et al. Effects of clay on phase morphology and mechanical properties in polyamide 6/EPDM-g-MA/organoclay ternary nanocomposites [J].Polymer,2007,48(7):2144.
8 Lim S H, Dasari A, Yu Z Z, et al. Fracture toughness of nylon 6/organoclay/elastomer nanocomposites [J]. Compos Sci Technol,2007,67(14):2914.
9 Ning N Y, Deng H, Luo F, et al. Effect of whiskers nucleation abi-lity and shearing function on the interfacial crystal morphology of polyethylene (PE)/raw whiskers composites [J]. Composites Part B,2011,42(4):631.
10 Feng X, Wang H Y, Shi Y J, et al. The effects of the size and content of potassium titanate whiskers on the properties of PTW/PTFE composites [J].Mater Sci Eng A,2007,448(1-2):253.
11 Qiu L, Tsai F C, Zhou Q, et al. Influence of CaCl2 on the structure and mechanical properties of PA6/CaSO4 whisker composites [J]. Colloid Polym,2010,28(2):81(in Chinese).
邱亮,蔡芳昌,周勤,等.氯化钙对尼龙6/硫酸钙晶须增强材料结构与力学性能的影响研究[J].胶体与聚合物,2010,28(2):81.
12 Tjong S C, Meng Y Z. Properties and morphology of polyamide 6 hybrid composites containing potassium titanate whisker and liquid crystalline copolyester [J].Polymer,1999,40(5):1109.
13 Dweiri R, Azhari C H. Thermal and flow property-morphology relationship of sugarcane bagasse fiber-filled polyamide 6 blends [J].J Appl Polym Sci,2004,92(6):3744.
14 Cao M L, Zhang C, Wei J Q. Microscopic reinforcement for cement based composite materials [J]. Constr Build Mater,2013,40:14.
15 Abdulkadir Güllü, Ahmet zdemir, Emin zdemir. Experimental investigation of the effect of glass fibres on the mechanical properties of polypropylene (PP) and polyamide 6 (PA6) plastics [J].Mater Des,2006,27(4):316.
16 Chow W S, Mohd Ishak Z A, Apostolov A A, et al. Compatibilizing effect of maleated polypropylene on the mechanical properties and morphology of injection molded polyamide 6/polypropylene/organoclay nanocomposites [J]. Polymer,2003,44(23):7427.
17 王贵恒.高分子材料成型加工原理[M].北京:化学工业出版社,2011:6.
18 Shiao M L, Nair S V, Garrett P D, et al. Effect of glass-fiber reinforcement and annealing on microstructure and mechanical behaviour of nylon 6,6:Part Ⅱ Mechanical behaviour [J]. Mater Sci,1994,29(7):1739.
19 Zhang X J, Zhang X Y, et al. Mechanical and thermal properties of denture PMMA reinforced with silanized aluminum borate whiskers [J]. Dental Mater J,2012,31(6):903.
20 顾宜,赵长生.材料科学与工程基础[M].北京:化学工业出版社,2011:3.
21 Sachin N Sathe, Rao K V, Surekha Devi, et al. The effect of composition on morphological, thermal, and mechanical properties of polypropylene/nylon-6/polypropylene-g-butyl acrylate blends [J]. Polym Eng Sci,1996,36(19):2443.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[3] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[4] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[5] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[10] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[11] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[12] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[13] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[14] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[15] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed