Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 117-120    https://doi.org/10.11896/j.issn.1005-023X.2017.016.024
  材料研究 |
Ti40阻燃钛合金电子束焊接头组织与力学性能*
江畅1, 黄春平1,2, 夏春1, 柯黎明1
1 南昌航空大学轻合金加工科学与技术国防重点学科实验室, 南昌 330063;
2 西北工业大学凝固技术国家重点实验室, 西安 710072
Microstructure and Mechanical Properties of Ti40 Burn Resistant Titanium Alloy Joints by Electron Beam Welding
JIANG Chang1, HUANG Chunping1,2, XIA Chun1, KE Liming1
1 National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University, Nanchang 330063;
2 State Key Laboratory of Solidification Processing,Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 1530KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用不同工艺参数对2 mm厚Ti40阻燃钛合金进行电子束焊接(EBW),通过金相分析、电子探针(EPMA)、室温拉伸以及显微硬度测试对Ti40阻燃钛合金电子束焊接接头的显微组织和力学性能进行分析。结果表明,焊缝中分布着晶粒内部有片层状组织析出的β柱状晶和少量等轴β晶粒,熔合线到焊缝中心晶粒逐渐细化,无明显热影响区。接头中易产生气孔、裂纹等缺陷,通过添加直线扫描波形能够有效地控制焊缝气孔缺陷,从而提高接头的强度。添加直线扫描波形电子束焊的Ti40阻燃钛合金的抗拉强度仍可达到917 MPa,断口呈现出脆性断裂与韧性断裂的混合特征,焊缝区的硬度高于母材,其最大值为376HV。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江畅
黄春平
夏春
柯黎明
关键词:  Ti40阻燃钛合金  电子束焊  组织  力学性能    
Abstract: The Ti40 thick and Ti40 burn resistant titanium alloy in 2 mm was welded by electron beam with different welding parameter. Microstructure and mechanical properties of Ti40 burn resistant titanium alloy joints were studied by metallographic analysis, electron probe microanalysis, room-temperature tensile test and micro-hardness test. The results showed that β columnar crystal with intragranular slice layer structure and a few equiaxed β grain were distributed in the weld seam. Additionally, grain size of weld seam became finer from fusion line to the seam center and the heat affected zone is not distinct. Specifically, micro defects were easy to appear in the joints, such as pores and cracks, which could be effectively controlled by straight scanning waveform, and it would lead to the improvement of joint strength. The tensile strength of Ti40 burn resistant titanium alloy with straight scanning waveform EBW could reach at 917 MPa and the fracture was characterized with brittle and ductile fracture. The maximum hardness of the weld zone was 376HV which was higher than the base metal.
Key words:  Ti40 burn resistant titanium alloy    electron beam welding    microstructure    mechanical property
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TG456.3  
基金资助: 轻合金加工科学与技术国防重点学科实验室开放课题研究基金(GF201201004);西北工业大学凝固技术国家重点实验室开放课题(SKLSP201634)
通讯作者:  黄春平:通讯作者,男,1980年生,副教授,主要从事高能束焊接及搅拌摩擦焊加工制备复合材料技术研究 E-mail:hcp98106@163.com   
作者简介:  江畅:男,1992年生,硕士研究生,研究方向为钛合金高能束焊
引用本文:    
江畅, 黄春平, 夏春, 柯黎明. Ti40阻燃钛合金电子束焊接头组织与力学性能*[J]. 《材料导报》期刊社, 2017, 31(16): 117-120.
JIANG Chang, HUANG Chunping, XIA Chun, KE Liming. Microstructure and Mechanical Properties of Ti40 Burn Resistant Titanium Alloy Joints by Electron Beam Welding. Materials Reports, 2017, 31(16): 117-120.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.024  或          https://www.mater-rep.com/CN/Y2017/V31/I16/117
1 Shu Ying, Huang Zhanghong, Peng Wenwen, et al. High temperature tensile mechanical properties and fracture behavior of as-cast Ti40 burn resistant titanium alloy[J]. Mater Rev:Res,2014,28(10):84(in Chinese).
舒滢, 黄张洪, 彭雯雯,等. 铸态Ti40阻燃钛合金高温拉伸力学性能及断裂行为研究[J]. 材料导报:研究篇,2014,28(10):84.
2 Zhao Yongqing, Zhou Lian, Deng Ju. Microstructures after high temperature deformation of β Ti40 burn resistant titanium alloy as-casting[J]. Mater Mech Eng,2000,24(1):14(in Chinese).
赵永庆, 周廉, 邓炬. β型Ti40阻燃钛合金铸态组织高温变形的微观组织[J]. 机械工程材料,2000,24(1):14.
3 Zhao Yongqing, et al. The second phases and their effects on pro-perties in Ti40 burn resistant titanium alloy thermally exposed for long time[J]. Rare Met Mater Eng,2002,31(2):84(in Chinese).
赵永庆, 等. β型Ti40阻燃钛合金高温长期作用的第二相及其对性能的影响[J]. 稀有金属材料与工程,2002,31(2):84.
4 Xin Shewei, Zhao Yongqing, Zeng Weidong, et al. Effect of thermal exposure eat 550 ℃ on mechanical properties of Ti40 burn resistant titanium alloy[J]. Heat Treat Met,2007,32(9):55(in Chinese).
辛社伟, 赵永庆, 曾卫东,等. 550 ℃热暴露对Ti40阻燃钛合金力学性能的影响[J]. 金属热处理,2007,32(9):55.
5 Xin Shewei, Zhao Yongqing, Zeng Weidong, et al. Analysis and discussion of mechanical properties and microstructure developments for Ti40 alloy thermal exposed at 550 ℃[J]. Rare Met Mater Eng,2008,37(3):423(in Chinese).
辛社伟, 赵永庆, 曾卫东,等. Ti40合金550 ℃热暴露组织和性能演化规律的分析与讨论[J]. 稀有金属材料与工程,2008,37(3):423.
6 Zhao Yongqing, Xin Shewei, Wu Huan, et al. Rare metal materials and engineering, effect of heat treatment on thermal stability of Ti40 alloy[J]. Rare Met Mater Eng,2008,37(4):660(in Chinese).
赵永庆, 辛社伟, 吴欢,等. 热处理对Ti40阻燃钛合金热稳定性能的影响[J]. 稀有金属材料与工程,2008,37(4):660.
7 Xia Shewei,Zhao Yongqing,Zeng Weiding.Heat treatment of Ti40 burn resistant titanium alloy[J]. Heat Treat Met,2008,33(5):68(in Chinese).
辛社伟, 赵永庆, 曾卫东. Ti40阻燃钛合金热处理的研究[J]. 金属热处理,2008,33(5):68.
8 Lai Yunjin, Zhang Pingxiang, Xin Shewei, et al. Research progress on engineered technology of burn-resistant titanium alloys in China[J]. Rare Met Mater Eng,2015(8):2067(in Chinese).
赖运金, 张平祥, 辛社伟,等. 国内阻燃钛合金工程化技术研究进展[J]. 稀有金属材料与工程,2015(8):2067.
9 牛济泰,孟令辉,张杰,等. 航空航天材料的焊接与胶接[M]. 北京:国防工业出版社,2012.
10 Hu Jianjun,Zou Yi,Hou Tianfeng. Application analysis of gear surface modification with large area low energy electron beam[J]. J Chongqing University of Technology: Natural Science,2014(7):35(in Chinese).
胡建军, 邹毅, 侯天凤. 大面积低能电子束对齿轮表面改性的应用分析[J]. 重庆理工大学学报:自然科学版,2014(7):35.
11 Chen Yuanfang,Ye Wei,Mao Rongshan, et al. Fraction and wear effect of Ni200 with high current pulsed electron beam[J]. J Chongqing University of Technology: Natural Science,2013,27(5):26(in Chinese).
陈元芳, 叶伟, 茆荣山,等. 强流脉冲电子束处理对Ni200摩擦磨损性能的影响[J]. 重庆理工大学学报:自然科学版,2013,27(5):26.
12 赵永庆,洪权,葛鹏,等. 钛及钛合金金相图谱[M].长沙:中南大学出版社,2011:99.
13 Huang Jianglin, Warnken N, Gebelin J C . On the mechanism of porosity formation during welding of titanium alloys[J]. Acta Mater,2012,60:3215.
14 Mohandas T, Banerjee D. Fusion zone microstructure and porosity in electron beam welds of an α+β titanium alloy[J]. Metall Mater Trans A,1999,30:789.
15 Gong Ping. Research on the factors influenced electron beam weld shape for TC4 titanium alloy[D]. Dalian: Dalian Jiaotong University,2007(in Chinese).
宫平. TC4钛合金电子束焊接工艺参数对焊缝形状的影响[D]. 大连:大连交通大学,2007.
16 Zhao Yongqing, Qu Henglei, Zhu Kangying, et al. The second phases in a burn resistant alloy-Ti40[J]. Rare Met Mater Eng,2001,30(6):413(in Chinese).
赵永庆, 曲恒磊, 朱康英, 等. Ti40阻燃钛合金中的第二相[J]. 稀有金属材料与工程,2001,30(6):413.
17 Xin Shewei, Zhao Yongqing, Zeng Weidong,et al. Mechanism of V and Cr on mechanical properties of Ti40 burn resistant titanium alloy[J]. Chin J Nonferr Met,2008,18(7):1216(in Chinese).
辛社伟, 赵永庆, 曾卫东, 等.钒和铬对Ti40阻燃钛合金力学性能的影响机制[J].中国有色金属学报,2008,18(7):1216.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[7] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[8] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[9] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[10] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[11] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[12] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[13] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[14] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[15] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed